

上海大学未来技术学院 | 上海大学人工智能研

ersity 📗 institute of artificial intelligence, shanghai universit

人工智能导论

——第2课:人工智能基本理论

叶林奇

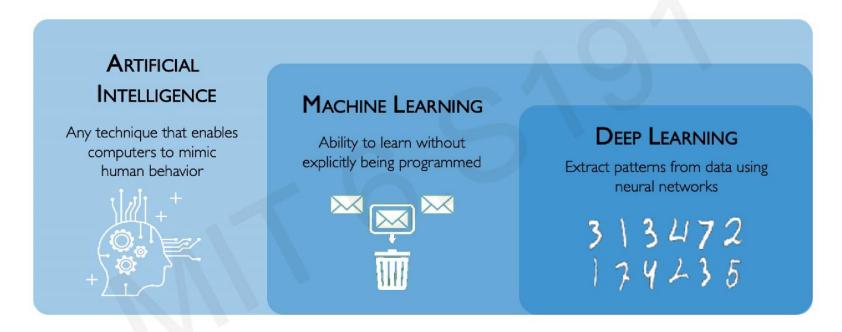
未来技术学院 (人工智能研究院)

2023冬季学期

提纲

- 一、前馈网络
- 二、循环网络
- 三、卷积网络

What is Deep Learning?



Teaching computers how to learn a task directly from raw data

◎ | 人工智能基本理论

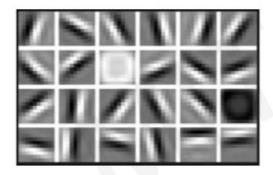
Why Deep Learning and Why Now?

Why Deep Learning?

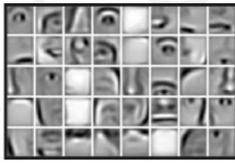
Hand engineered features are time consuming, brittle, and not scalable in practice

Can we learn the **underlying features** directly from data?

Low Level Features



Mid Level Features



High Level Features

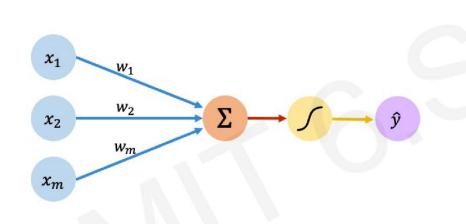
Lines & Edges Eyes & Nose & Ears

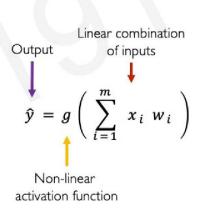
Facial Structure

※ | 人工智能基本理论

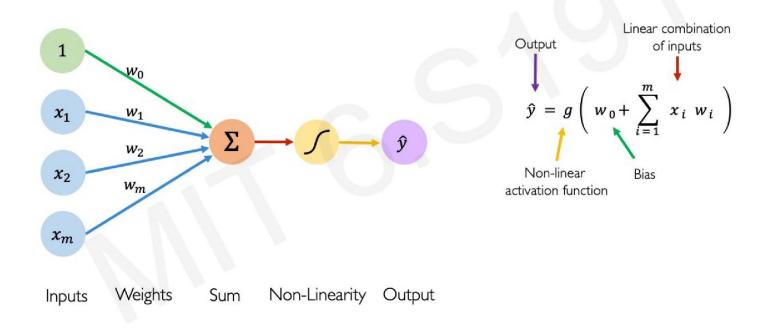
The Perceptron

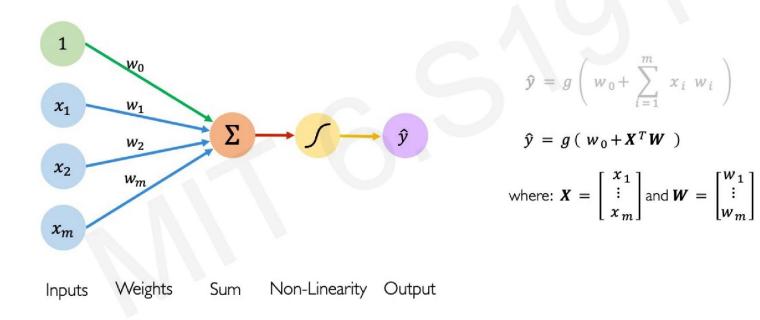
The structural building block of deep learning

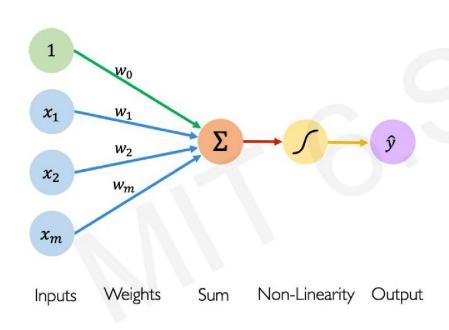




Inputs Weights Sum Non-Linearity Output





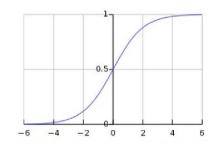


Activation Functions

$$\hat{y} = \frac{g}{g} (w_0 + X^T W)$$

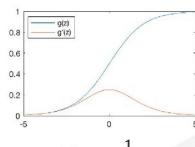
Example: sigmoid function

$$g(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$



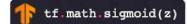
Common Activation Functions

Sigmoid Function

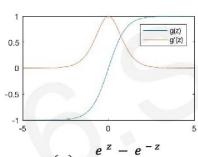


$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

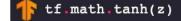


Hyperbolic Tangent

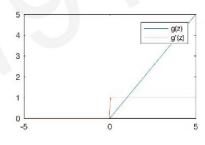


$$g(z) = \frac{e^{-e}}{e^z + e^{-z}}$$

$$g'(z)=1-g(z)^2$$

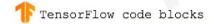


Rectified Linear Unit (ReLU)



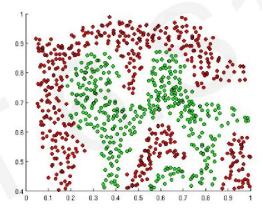
$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$



Importance of Activation Functions

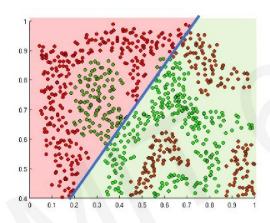
The purpose of activation functions is to **introduce non-linearities** into the network



What if we wanted to build a neural network to distinguish green vs red points?

Importance of Activation Functions

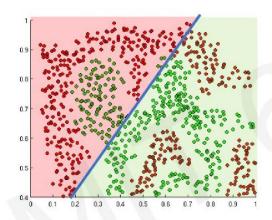
The purpose of activation functions is to **introduce non-linearities** into the network



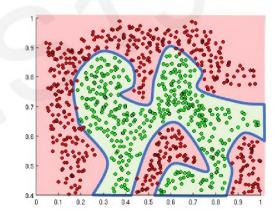
Linear activation functions produce linear decisions no matter the network size

Importance of Activation Functions

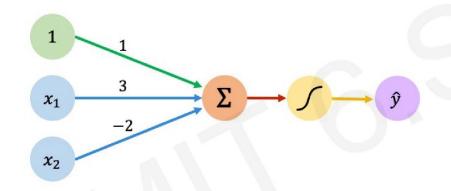
The purpose of activation functions is to **introduce non-linearities** into the network



Linear activation functions produce linear decisions no matter the network size



Non-linearities allow us to approximate arbitrarily complex functions

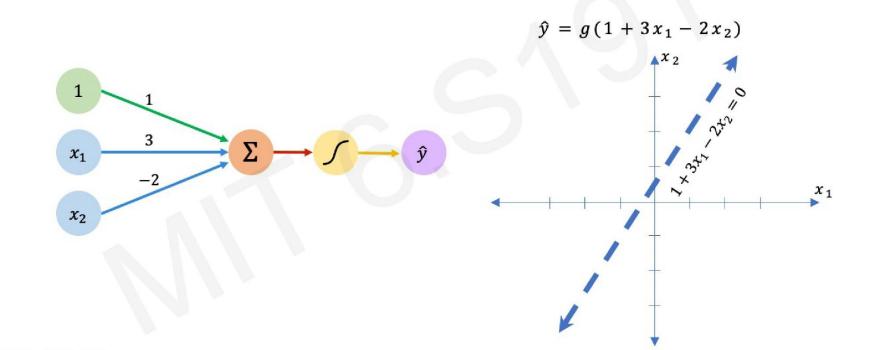


We have:
$$w_0 = 1$$
 and $\mathbf{W} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

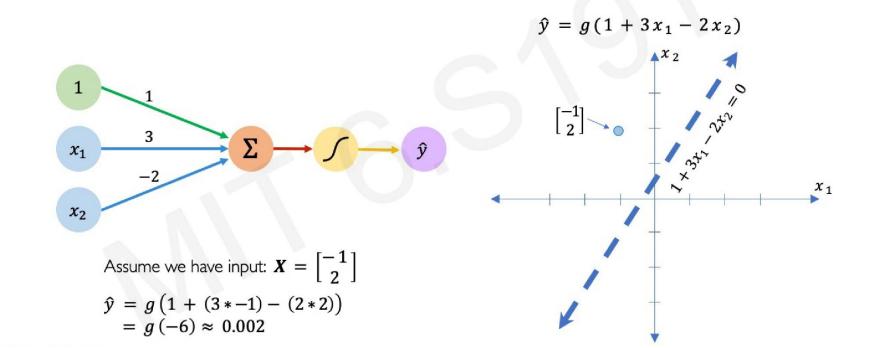
$$\hat{y} = g \left(w_0 + \mathbf{X}^T \mathbf{W} \right)$$

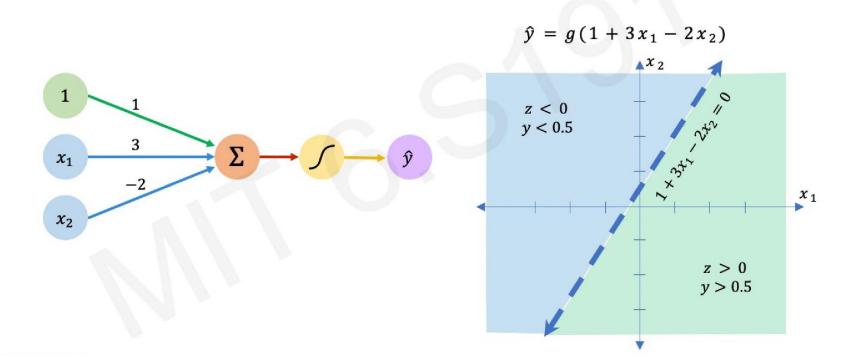
$$= g \left(1 + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 3 \\ -2 \end{bmatrix} \right)$$

$$\hat{y} = g \left(1 + 3x_1 - 2x_2 \right)$$
This is just a line in 2D!



※ 人工智能基本理论



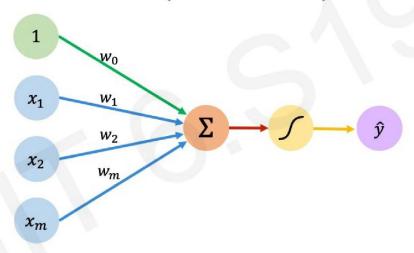


※ 人工智能基本理论

Building Neural Networks with Perceptrons

The Perceptron: Simplified

$$\hat{y} = g(w_0 + \boldsymbol{X}^T \boldsymbol{W})$$

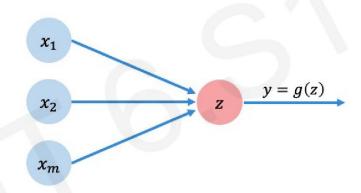


Weights Inputs

Sum

Non-Linearity Output

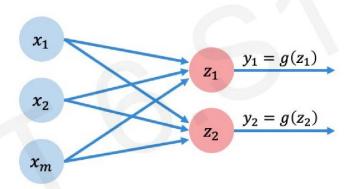
The Perceptron: Simplified



$$z = w_0 + \sum_{j=1}^m x_j w_j$$

Multi Output Perceptron

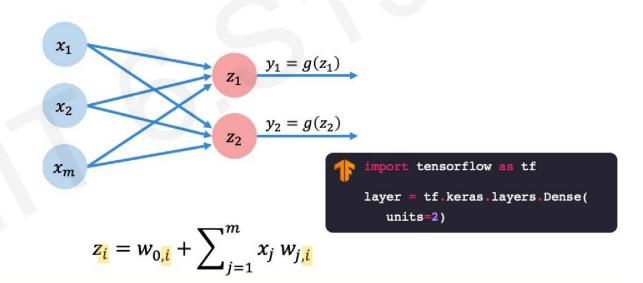
Because all inputs are densely connected to all outputs, these layers are called **Dense** layers



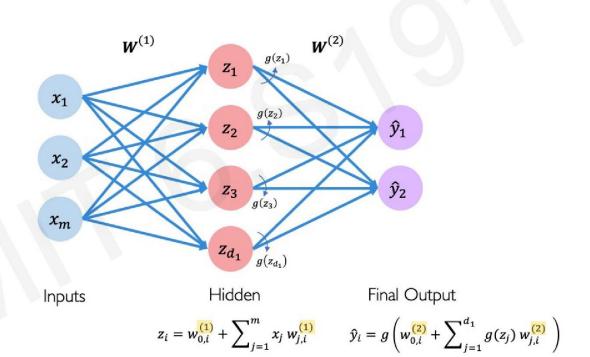
$$z_{i} = w_{0,i} + \sum_{j=1}^{m} x_{j} w_{j,i}$$

Multi Output Perceptron

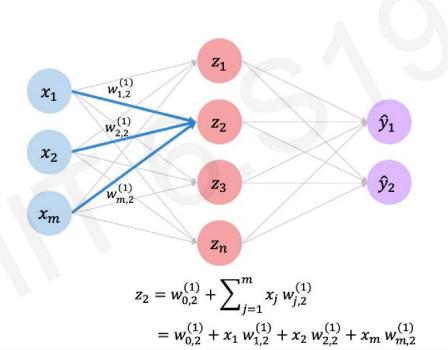
Because all inputs are densely connected to all outputs, these layers are called **Dense** layers



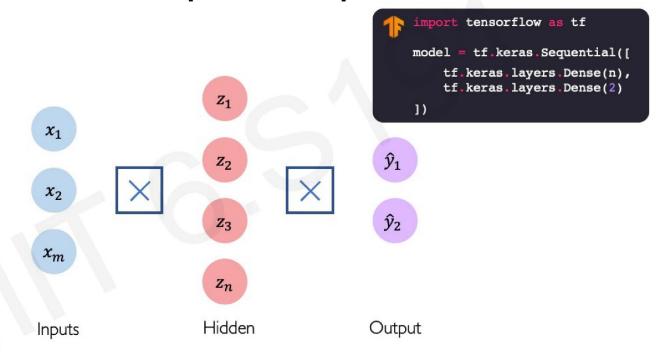
Single Layer Neural Network



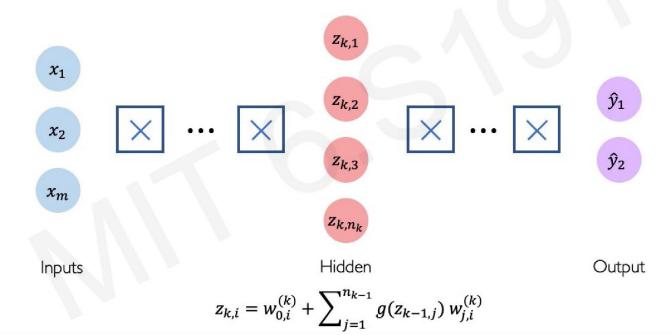
Single Layer Neural Network



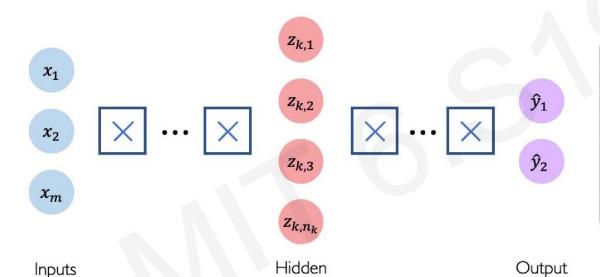
Multi Output Perceptron



Deep Neural Network



Deep Neural Network



 $z_{k,i} = w_{0,i}^{(k)} + \sum_{j=1}^{n_{k-1}} g(z_{k-1,j}) w_{j,i}^{(k)}$

```
import tensorflow as tf

model = tf.keras.Sequential([
   tf.keras.layers.Dense(n1),
   tf.keras.layers.Dense(n2),

itf.keras.layers.Dense(2)
])
```


|| 人工智能基本理论|

Applying Neural Networks

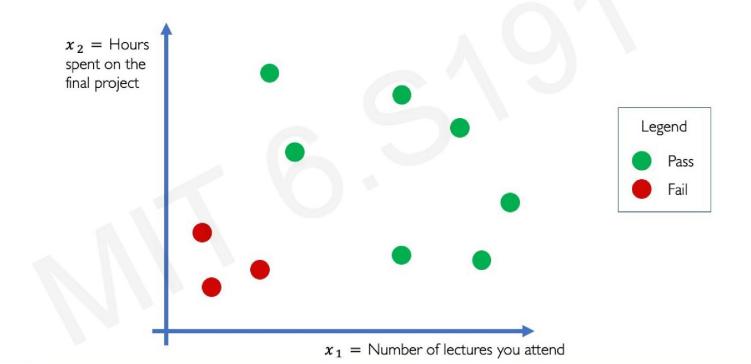
Example Problem

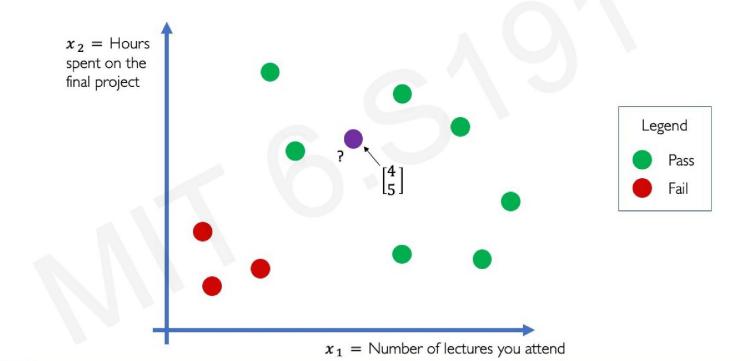
Will I pass this class?

Let's start with a simple two feature model

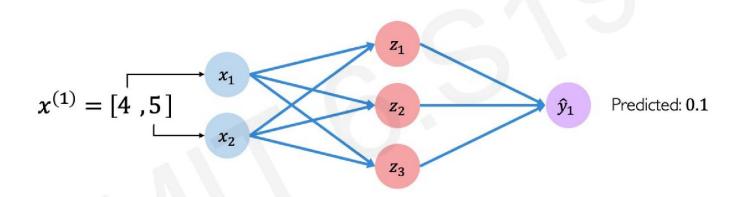
 x_1 = Number of lectures you attend

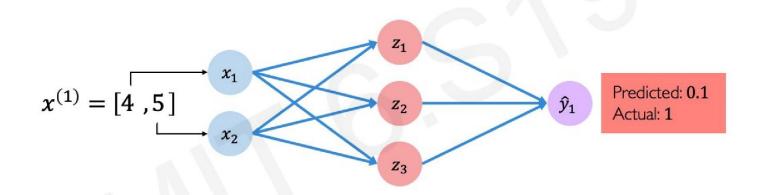
 x_2 = Hours spent on the final project





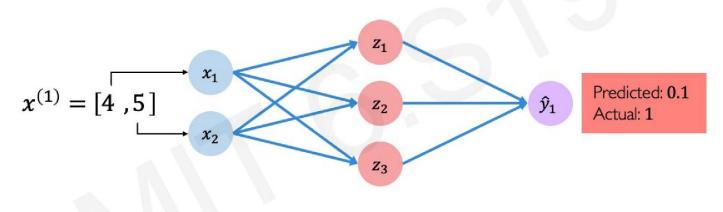
◎ | 人工智能基本理论





Quantifying Loss

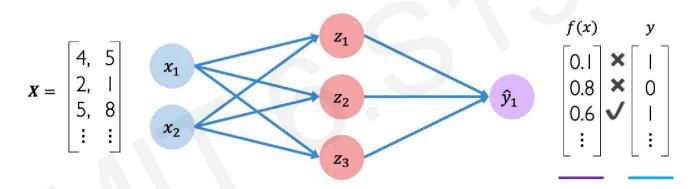
The **loss** of our network measures the cost incurred from incorrect predictions



$$\mathcal{L}(f(x^{(i)}; \mathbf{W}), y^{(i)})$$
Predicted Actual

Empirical Loss

The **empirical loss** measures the total loss over our entire dataset



Also known as:

- · Objective function
- · Cost function
- Empirical Risk

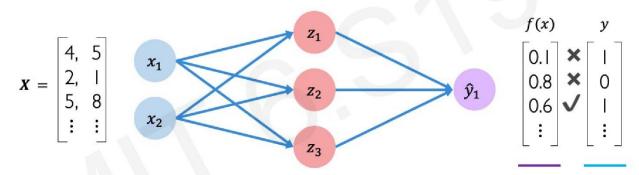
$$J(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; \mathbf{W}), y^{(i)})$$

Predicted

Actual

Binary Cross Entropy Loss

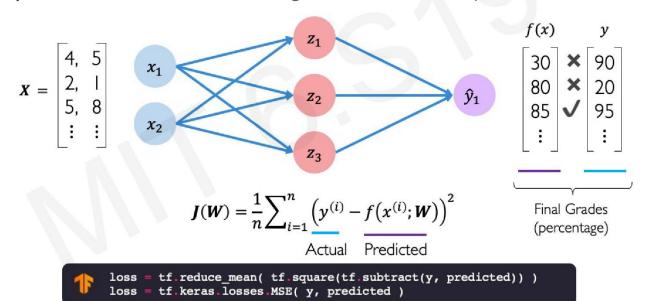
Cross entropy loss can be used with models that output a probability between 0 and 1



$$J(\mathbf{W}) = -\frac{1}{n} \sum_{i=1}^{n} \underbrace{y^{(i)} \log \left(f(\mathbf{x}^{(i)}; \mathbf{W}) \right) + (1 - y^{(i)}) \log \left(1 - f(\mathbf{x}^{(i)}; \mathbf{W}) \right)}_{\text{Actual}} + \underbrace{Actual}_{\text{Predicted}}$$

Mean Squared Error Loss

Mean squared error loss can be used with regression models that output continuous real numbers



◎ | 人工智能基本理论

Training Neural Networks

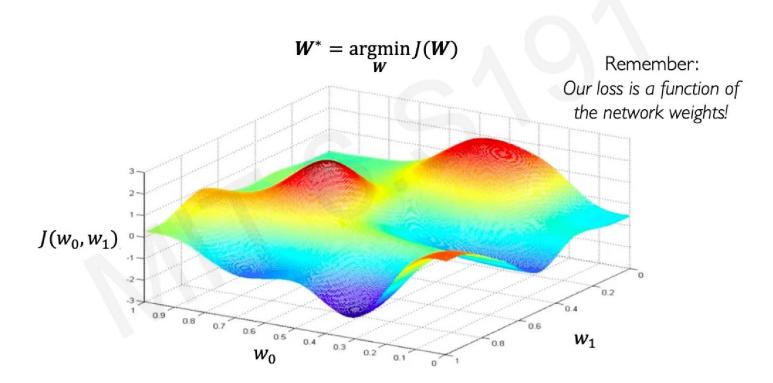
We want to find the network weights that achieve the lowest loss

$$W^* = \underset{W}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; W), y^{(i)})$$
$$W^* = \underset{W}{\operatorname{argmin}} J(W)$$

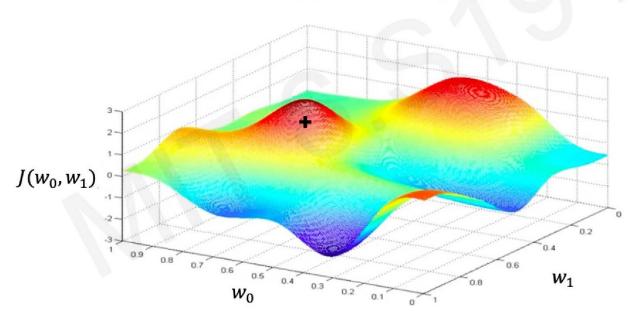
We want to find the network weights that achieve the lowest loss

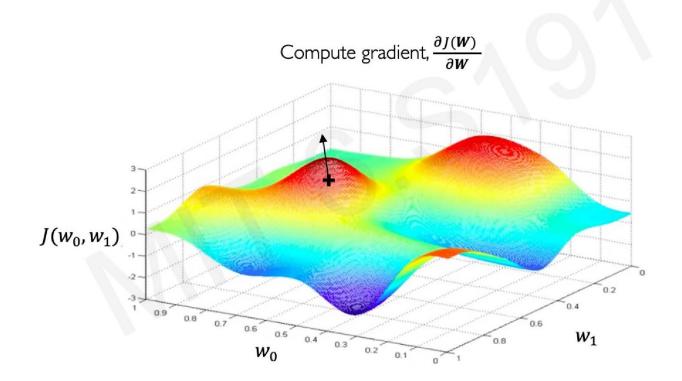
$$\boldsymbol{W}^* = \underset{\boldsymbol{W}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \mathcal{L}(f(x^{(i)}; \boldsymbol{W}), y^{(i)})$$

$$\boldsymbol{W}^* = \underset{\boldsymbol{W}}{\operatorname{argmin}} J(\boldsymbol{W})$$
Remember:
$$\boldsymbol{W} = \{\boldsymbol{W}^{(0)}, \boldsymbol{W}^{(1)}, \dots\}$$

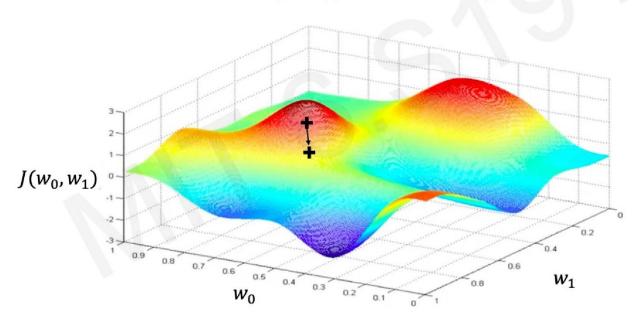


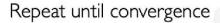
Randomly pick an initial (w_0, w_1)

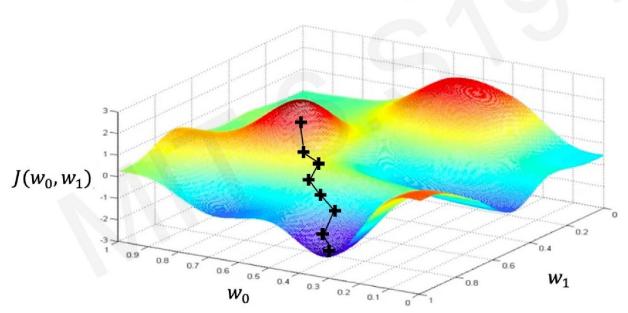




Take small step in opposite direction of gradient







- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$
- 4. Update weights, $\boldsymbol{W} \leftarrow \boldsymbol{W} \eta \frac{\partial J(\boldsymbol{W})}{\partial \boldsymbol{W}}$
- 5. Return weights

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights


```
import tensorflow as tf

weights = tf.Variable([tf.random.normal()])

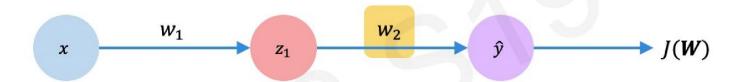
while True:  # loop forever

with tf.GradientTape() as g:
    loss = compute_loss(weights)
    gradient = g.gradient(loss, weights)

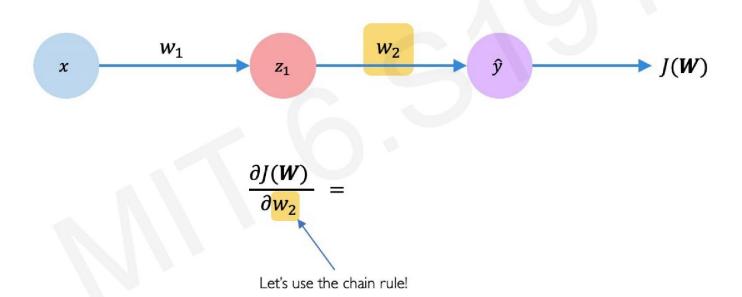
weights = weights - lr * gradient
```

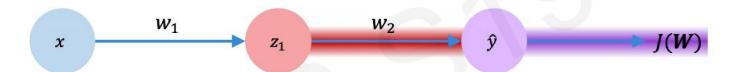
- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(w)}{\partial w}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights


```
import tensorflow as tf
weights = tf.Variable([tf.random.normal()])
while True:
             # loop forever
   with tf.GradientTape() as q:
            compute loss(weights)
      gradient = g.gradient(loss, weights)
   weights = weights - lr * gradient
```

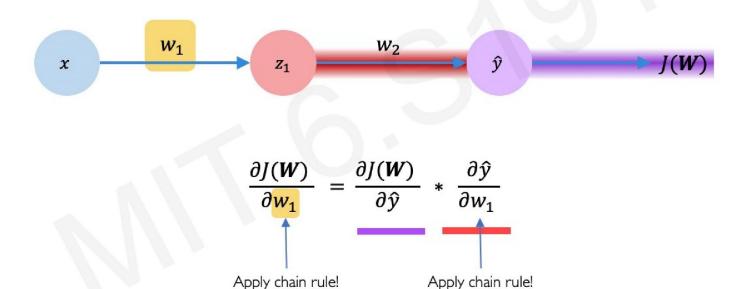



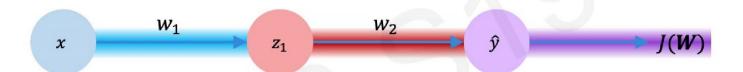
How does a small change in one weight (ex. w_2) affect the final loss J(W)?



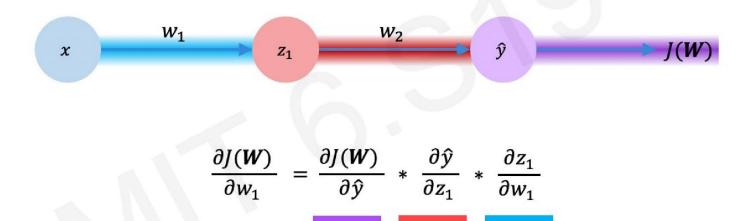


$$\frac{\partial J(\mathbf{W})}{\partial w_2} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_2}$$





$$\frac{\partial J(W)}{\partial w_1} = \frac{\partial J(W)}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z_1} * \frac{\partial z_1}{\partial w_1}$$

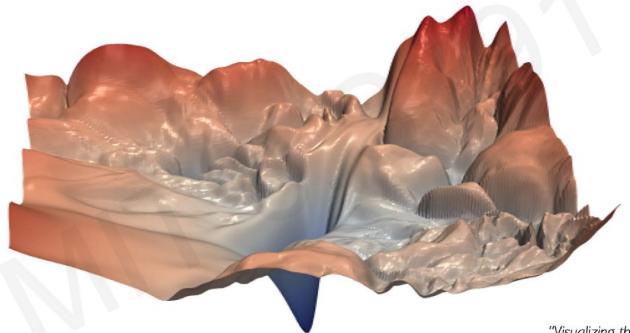


Repeat this for every weight in the network using gradients from later layers

※ 人工智能基本理论

Neural Networks in Practice: **Optimization**

Training Neural Networks is Difficult



"Visualizing the loss landscape of neural nets". Dec 2017.

Loss Functions Can Be Difficult to Optimize

Remember:

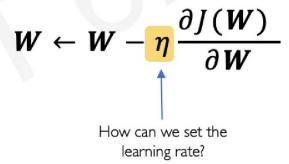
Optimization through gradient descent

$$W \leftarrow W - \eta \frac{\partial J(W)}{\partial W}$$

Loss Functions Can Be Difficult to Optimize

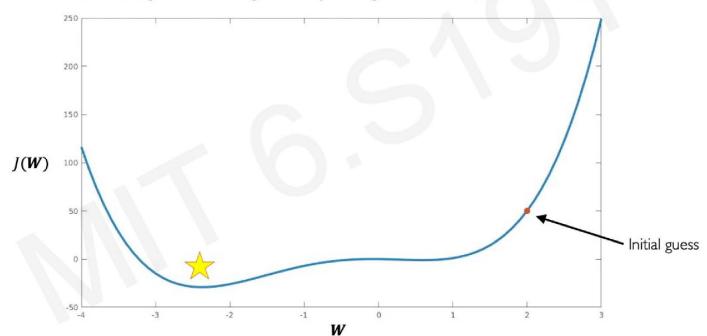
Remember:

Optimization through gradient descent



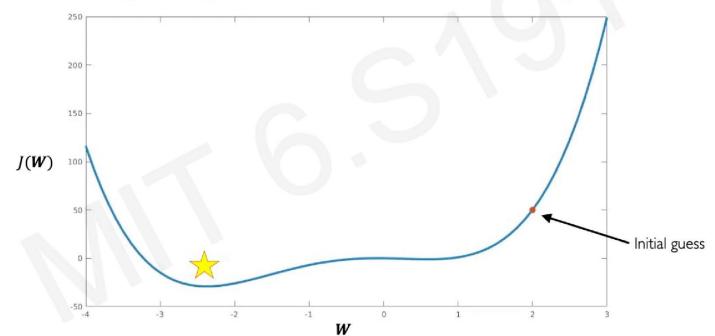
Setting the Learning Rate

Small learning rate converges slowly and gets stuck in false local minima



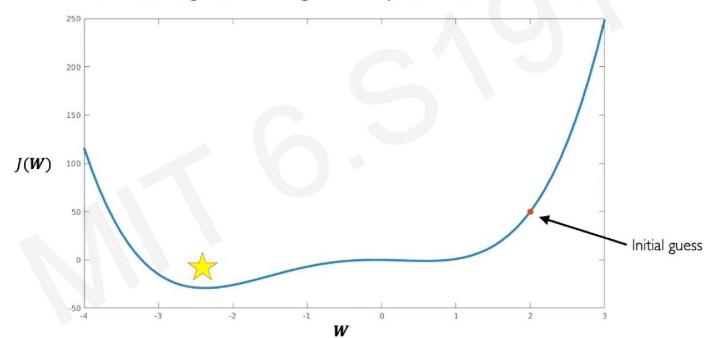
Setting the Learning Rate

Large learning rates overshoot, become unstable and diverge



Setting the Learning Rate

Stable learning rates converge smoothly and avoid local minima



How to deal with this?

Idea I:

Try lots of different learning rates and see what works "just right"

How to deal with this?

Idea I:

Try lots of different learning rates and see what works "just right"

Idea 2:

Do something smarter!

Design an adaptive learning rate that "adapts" to the landscape

Adaptive Learning Rates

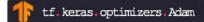
- Learning rates are no longer fixed
- Can be made larger or smaller depending on:
 - how large gradient is
 - how fast learning is happening
 - size of particular weights
 - etc...

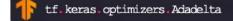
Gradient Descent Algorithms

Algorithm

- SGD
- Adam
- Adadelta
- Adagrad
- RMSProp

TF Implementation







Reference

Kiefer & Wolfowitz. "Stochastic Estimation of the Maximum of a Regression Function." 1952.

Kingma et al."Adam: A Method for Stochastic Optimization." 2014.

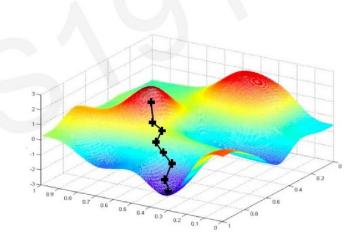
Zeiler et al. "ADADELTA: An Adaptive Learning Rate Method." 2012.

Duchi et al. "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization." 2011.

炒 人工智能基本理论

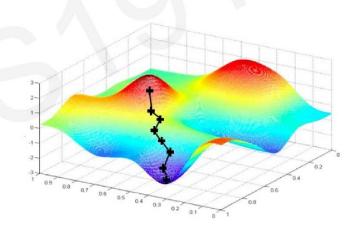
Neural Networks in Practice: Mini-batches

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$
- 4. Update weights, $\boldsymbol{W} \leftarrow \boldsymbol{W} \eta \frac{\partial J(\boldsymbol{W})}{\partial \boldsymbol{W}}$
- 5. Return weights



Algorithm

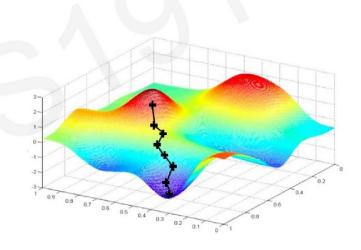
- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(w)}{\partial w}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights



Can be very computationally intensive to compute!

Stochastic Gradient Descent

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick single data point i
- 4. Compute gradient, $\frac{\partial J_i(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 6. Return weights

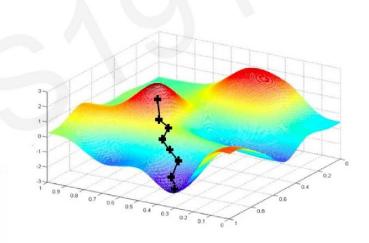


◎ 人工智能基本理论

Stochastic Gradient Descent

Algorithm

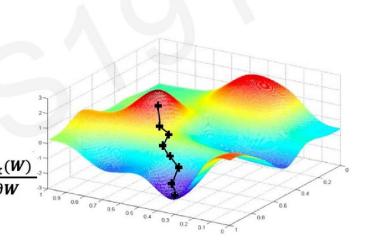
- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick single data point i
- 4. Compute gradient, $\frac{\partial J_i(w)}{\partial w}$
- 5. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 6. Return weights



Easy to compute but very noisy (stochastic)!

Stochastic Gradient Descent

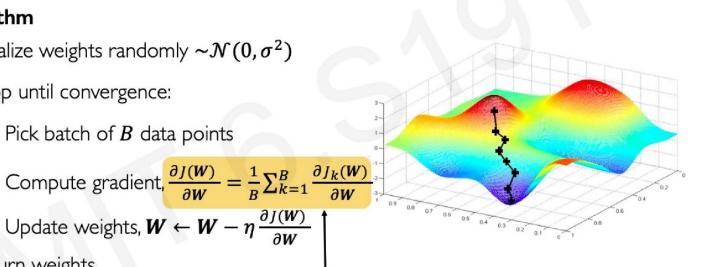
- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick batch of B data points
- 21(11)
- 4. Compute gradient, $\frac{\partial J(W)}{\partial W} = \frac{1}{B} \sum_{k=1}^{B} \frac{\partial J_k(W)}{\partial W}$ 5. Update weights, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 6. Return weights



Stochastic Gradient Descent

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- Loop until convergence:
- 3. Pick batch of B data points
- Update weights, $\boldsymbol{W} \leftarrow \boldsymbol{W} \eta \frac{\partial J(\boldsymbol{W})}{\partial \boldsymbol{W}}$ 5.
- 6. Return weights



Fast to compute and a much better estimate of the true gradient!

Mini-batches while training

More accurate estimation of gradient

Smoother convergence Allows for larger learning rates

Mini-batches while training

More accurate estimation of gradient

Smoother convergence
Allows for larger learning rates

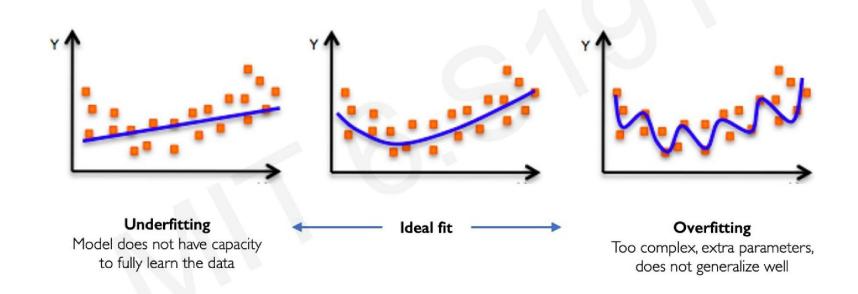
Mini-batches lead to fast training!

Can parallelize computation + achieve significant speed increases on GPU's

|| 人工智能基本理论|

Neural Networks in Practice: Overfitting

The Problem of Overfitting



Regularization

What is it?

Technique that constrains our optimization problem to discourage complex models

Regularization

What is it?

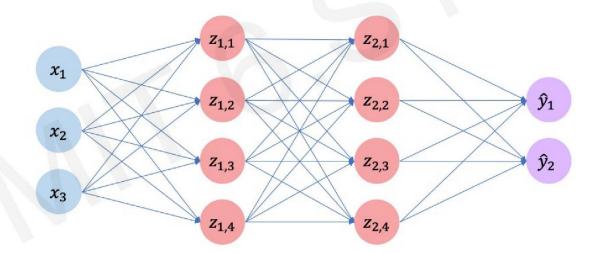
Technique that constrains our optimization problem to discourage complex models

Why do we need it?

Improve generalization of our model on unseen data

Regularization 1: Dropout

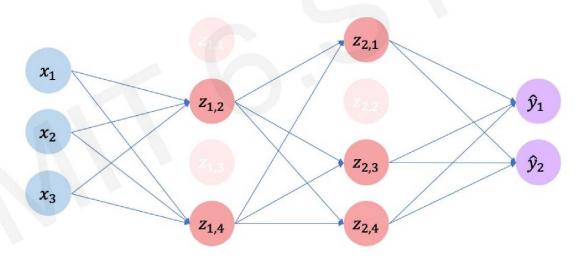
• During training, randomly set some activations to 0



Regularization 1: Dropout

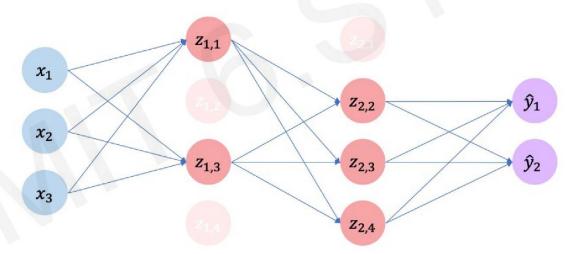
- During training, randomly set some activations to 0
 - Typically 'drop' 50% of activations in layer
 - Forces network to not rely on any I node

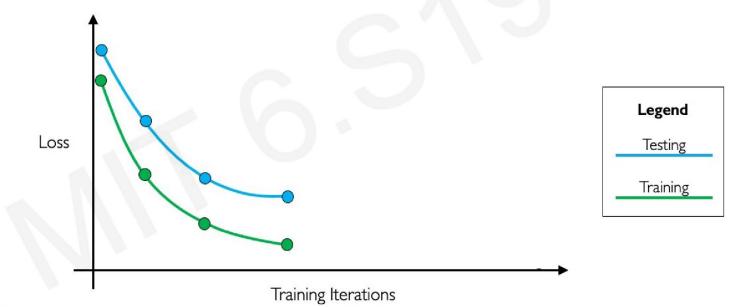
tf.keras.layers.Dropout(p=0.5)

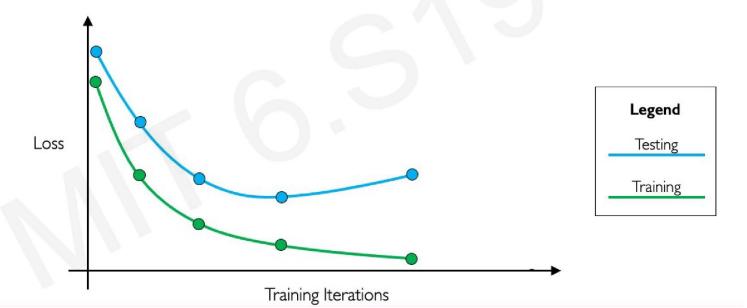


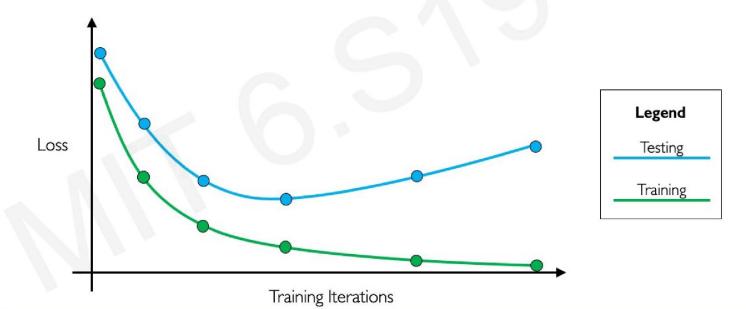
Regularization 1: Dropout

- During training, randomly set some activations to 0
 - Typically 'drop' 50% of activations in layer
 - Forces network to not rely on any I node





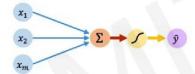




Core Foundation Review

The Perceptron

- Structural building blocks
- Nonlinear activation functions

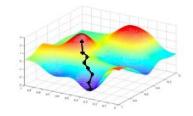


Neural Networks

- Stacking Perceptrons to form neural networks
- Optimization through backpropagation

Training in Practice

- Adaptive learning
- Batching
- Regularization

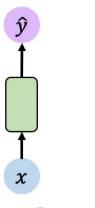


提纲

- 一、前馈网络
- 二、循环网络
- 三、卷积网络

Sequences in the Wild

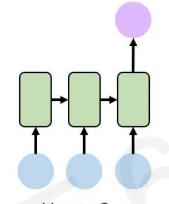
Sequence Modeling Applications



One to One **Binary Classification**

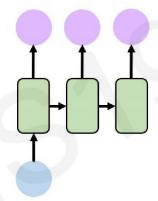
"Will I pass this class?"

Student → Pass?



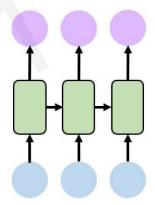
Many to One
Sentiment Classification

12:45 PM - 12 Feb 2018



One to Many
Image Captioning

"A baseball player throws a ball."



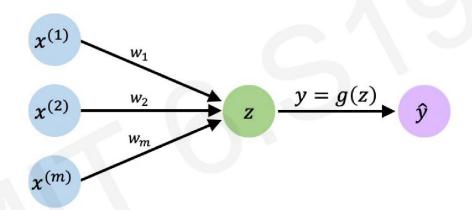
Many to Many

Machine Translation

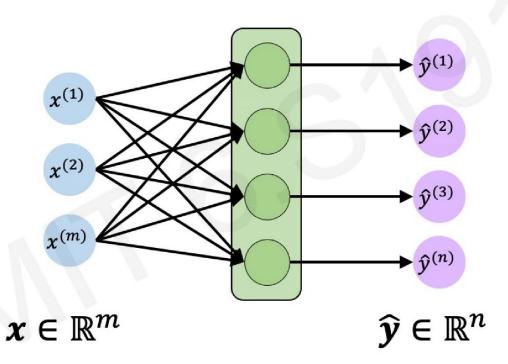
|| 人工智能基本理论|

Neurons with Recurrence

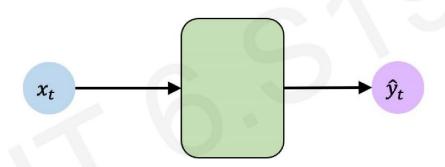
The Perceptron Revisited



Feed-Forward Networks Revisited



Feed-Forward Networks Revisited

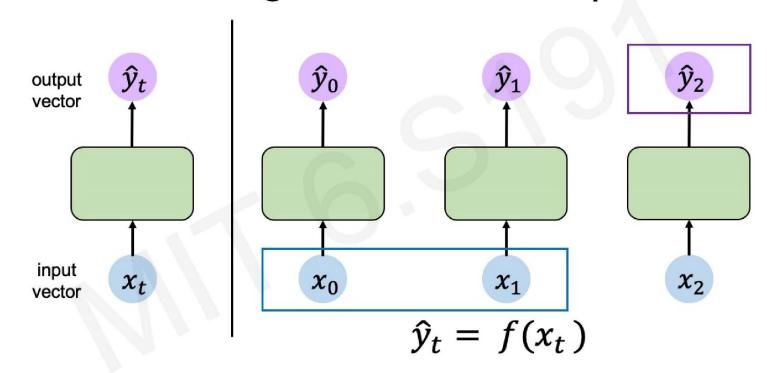


$$x_t \in \mathbb{R}^m$$

$$\hat{\mathbf{y}}_t \in \mathbb{R}^n$$

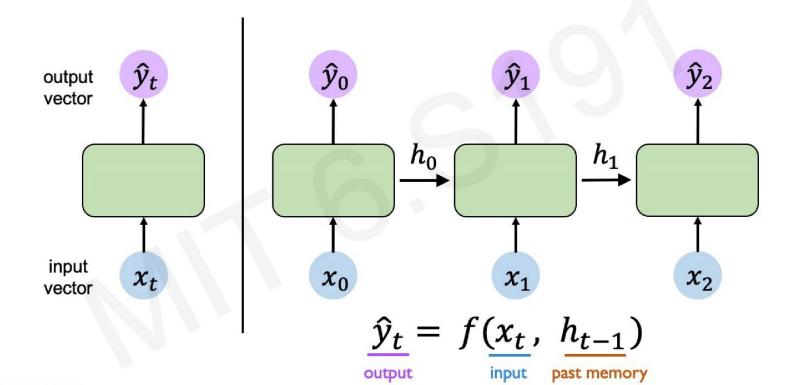
※ 人工智能基本理论

Handling Individual Time Steps



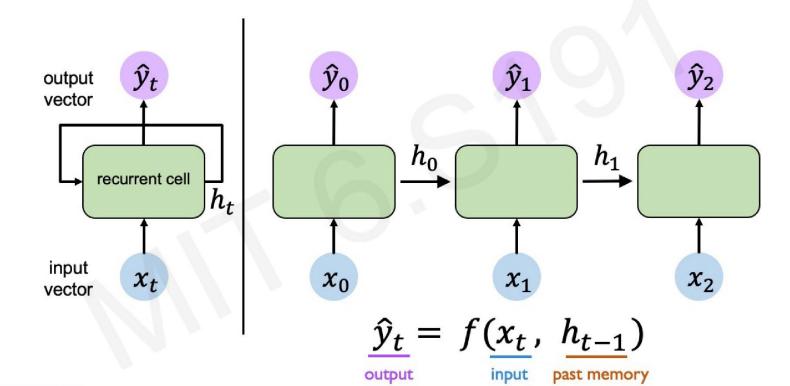
|| 人工智能基本理论|

Neurons with Recurrence



※ 人工智能基本理论

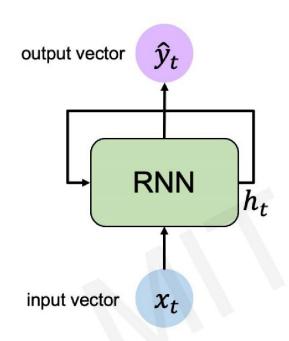
Neurons with Recurrence



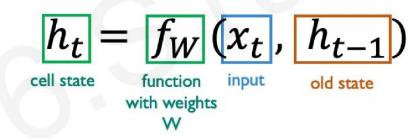
1 人工智能基本理论

Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs)



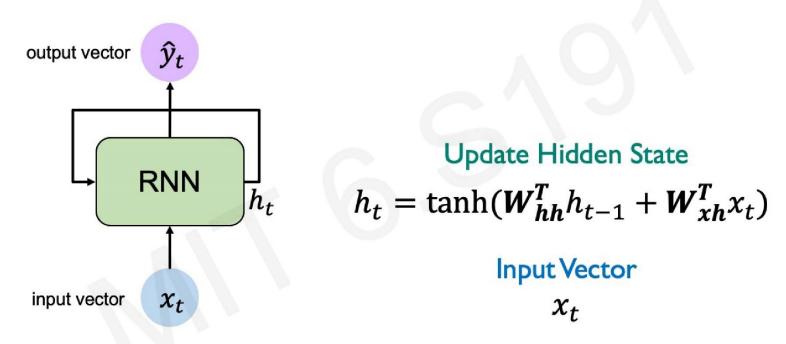
Apply a **recurrence relation** at every time step to process a sequence:



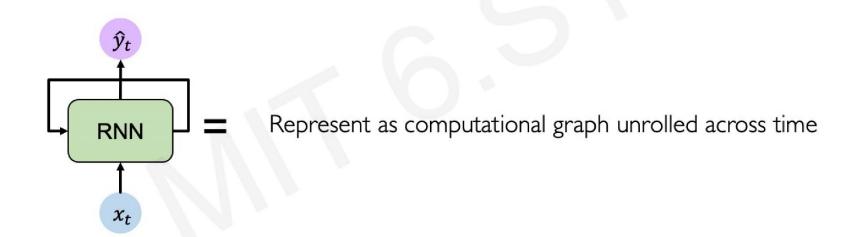
Note: the same function and set of parameters are used at every time step

RNNs have a state, h_t , that is updated at each time step as a sequence is processed

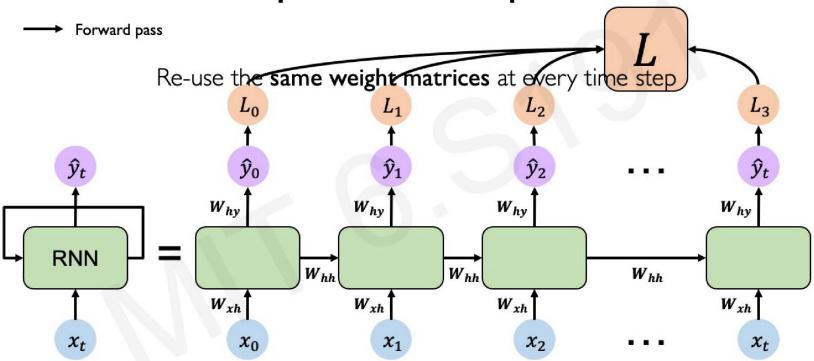
RNN State Update and Output



RNNs: Computational Graph Across Time



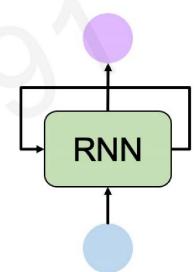
RNNs: Computational Graph Across Time



Sequence Modeling: Design Criteria

To model sequences, we need to:

- Handle variable-length sequences
- 2. Track long-term dependencies
- 3. Maintain information about **order**
- 4. Share parameters across the sequence



Recurrent Neural Networks (RNNs) meet these sequence modeling design criteria

※ 人工智能基本理论

A Sequence Modeling Problem: Predict the Next Word

A Sequence Modeling Problem: Predict the Next Word

"This morning I took my cat for a walk."

A Sequence Modeling Problem: Predict the Next Word

"This morning I took my cat for a walk."

given these words

A Sequence Modeling Problem: Predict the Next Word

"This morning I took my cat for a walk."

given these words

predict the

next word

◎ | 人工智能基本理论

A Sequence Modeling Problem: Predict the Next Word

"This morning I took my cat for a walk."

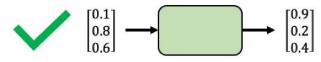
given these words

predict the

next word

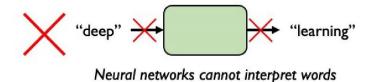
Representing Language to a Neural Network

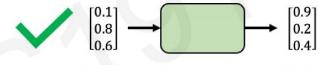
Neural networks cannot interpret words



Neural networks require numerical inputs

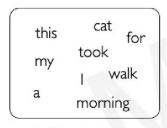
Encoding Language for a Neural Network





Neural networks require numerical inputs

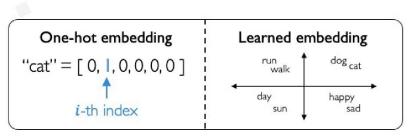
Embedding: transform indexes into a vector of fixed size.



I. Vocabulary:Corpus of words



2. Indexing: Word to index



3. Embedding: Index to fixed-sized vector

Handle Variable Sequence Lengths

The food was great

VS.

We visited a restaurant for lunch

VS.

We were hungry but cleaned the house before eating

Model Long-Term Dependencies

"France is where I grew up, but I now live in Boston. I speak fluent ____."

We need information from **the distant past** to accurately predict the correct word.

Capture Differences in Sequence Order

The food was good, not bad at all.

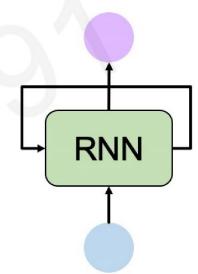
VS.

The food was bad, not good at all.

Sequence Modeling: Design Criteria

To model sequences, we need to:

- I. Handle variable-length sequences
- 2. Track **long-term** dependencies
- 3. Maintain information about **order**
- 4. Share parameters across the sequence

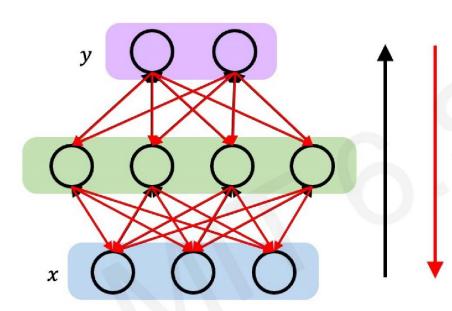


Recurrent Neural Networks (RNNs) meet these sequence modeling design criteria

|| 人工智能基本理论|

Backpropagation Through Time (BPTT)

Recall: Backpropagation in Feed Forward Models

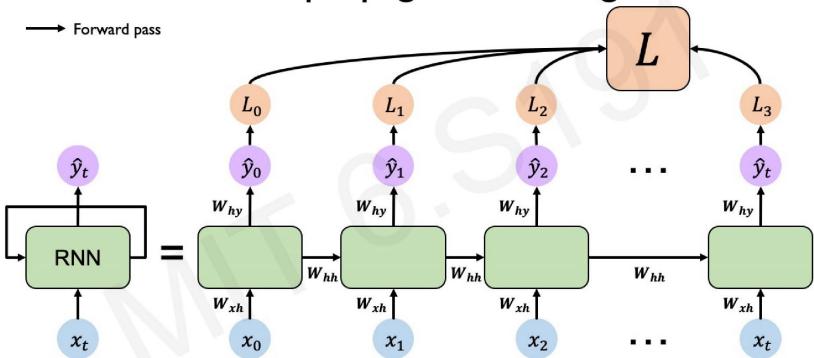


Backpropagation algorithm:

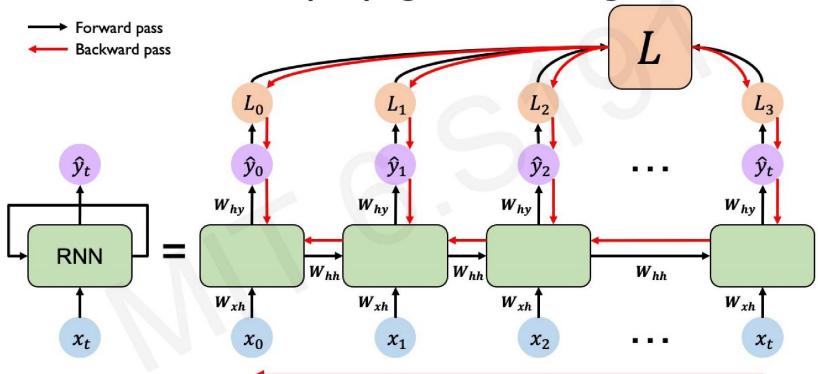
- I. Take the derivative (gradient) of the loss with respect to each parameter
- Shift parameters in order to minimize loss

◎ 人工智能基本理论

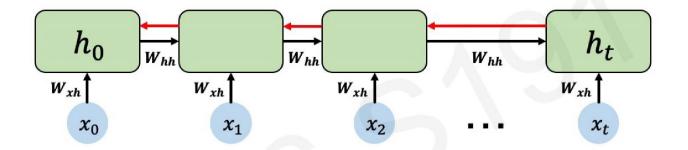
RNNs: Backpropagation Through Time



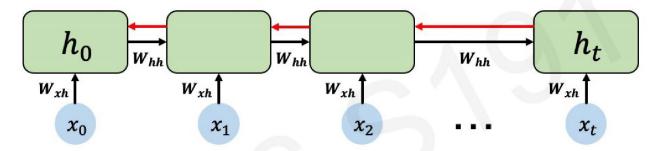
RNNs: Backpropagation Through Time



Standard RNN Gradient Flow

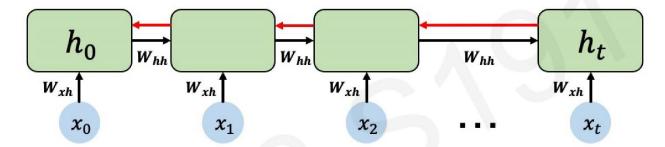


Standard RNN Gradient Flow



Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Standard RNN Gradient Flow: Exploding Gradients



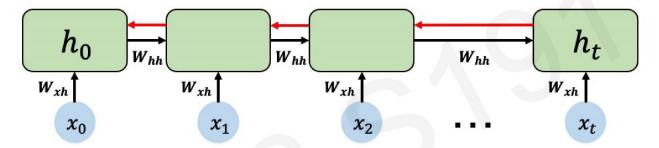
Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Many values > 1:

exploding gradients

Gradient clipping to scale big gradients

Standard RNN Gradient Flow: Vanishing Gradients



Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Many values > 1:

exploding gradients

Gradient clipping to scale big gradients

Many values < 1: vanishing gradients

- I. Activation function
- 2. Weight initialization
- 3. Network architecture

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

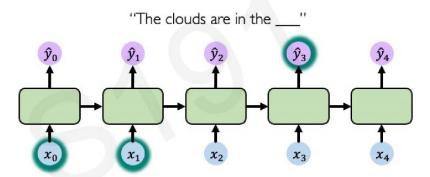
"The clouds are in the ____"

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

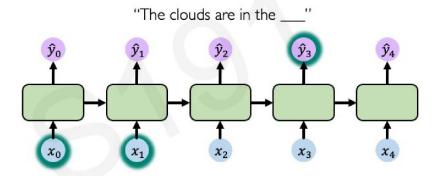


Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies



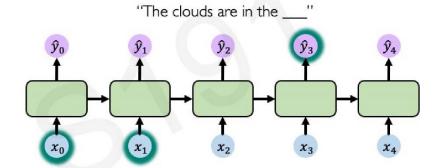
"I grew up in France, ... and I speak fluent___ "

Why are vanishing gradients a problem?

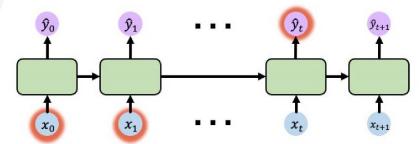
Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

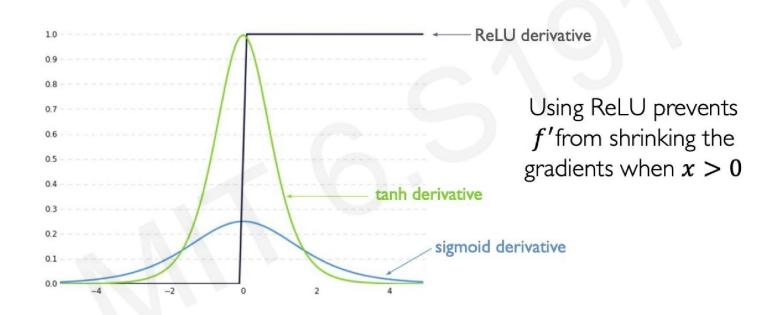
Bias parameters to capture short-term dependencies



"I grew up in France, ... and I speak fluent___ "



Trick #1: Activation Functions



Trick #2: Parameter Initialization

Initialize weights to identity matrix

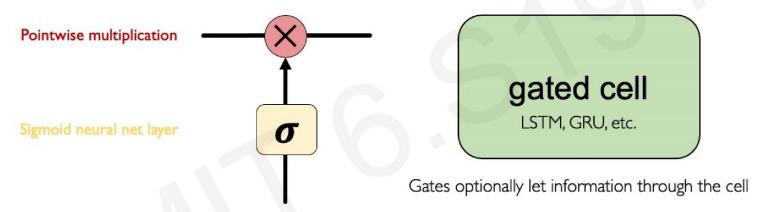
Initialize biases to zero

$$I_n = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

This helps prevent the weights from shrinking to zero.

Trick #3: Gated Cells

Idea: use gates to selectively add or remove information within each recurrent unit with

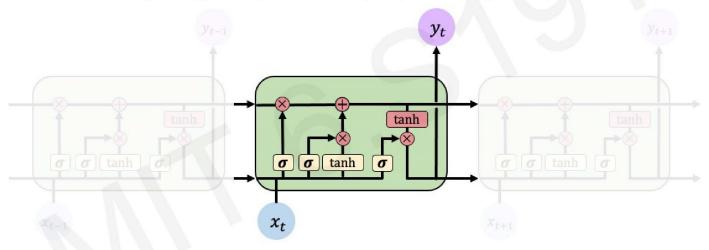


Long Short Term Memory (LSTMs) networks rely on a gated cell to track information throughout many time steps.

Long Short Term Memory (LSTMs)

Gated LSTM cells control information flow:

1) Forget 2) Store 3) Update 4) Output



LSTM cells are able to track information throughout many timesteps

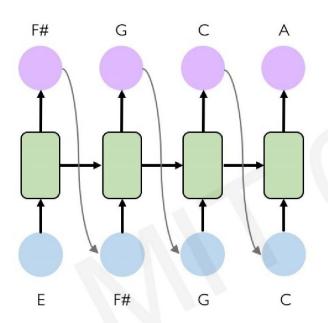
LSTMs: Key Concepts

- Maintain a cell state
- 2. Use gates to control the flow of information
 - Forget gate gets rid of irrelevant information
 - Store relevant information from current input
 - Selectively update cell state
 - Output gate returns a filtered version of the cell state
- 3. Backpropagation through time with partially uninterrupted gradient flow

※ 人工智能基本理论

RNN Applications & Limitations

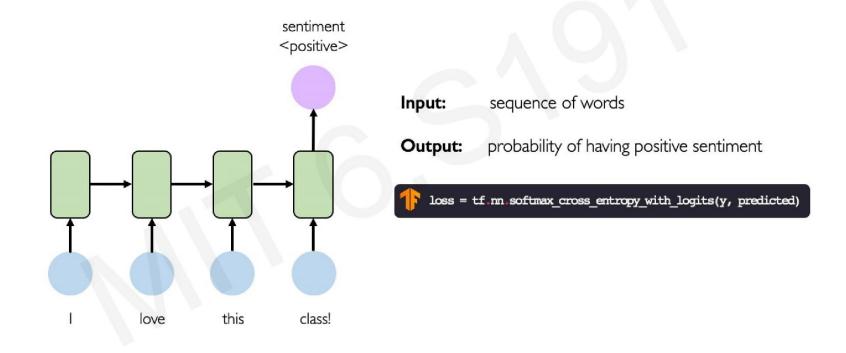
Example Task: Music Generation



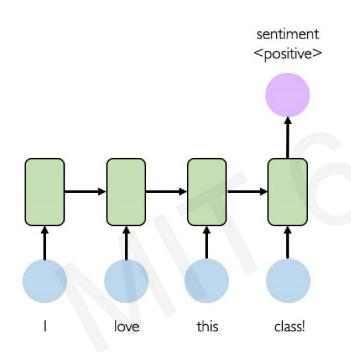
Input: sheet music

Output: next character in sheet music

Example Task: Sentiment Classification



Example Task: Sentiment Classification



Tweet sentiment classification

The @MIT Introduction to #DeepLearning is definitely one of the best courses of its kind currently available online

introtodeeplearning.com

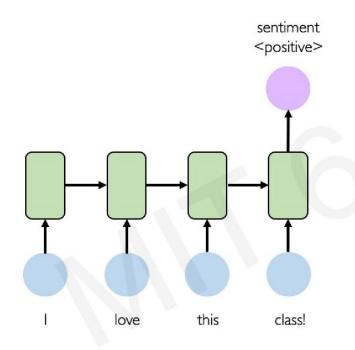
12:45 PM - 12 Feb 2018

Replying to @Kazuki2048

I wouldn't mind a bit of snow right now. We haven't had any in my bit of the Midlands this winter! :(

2:19 AM - 25 Jan 2019

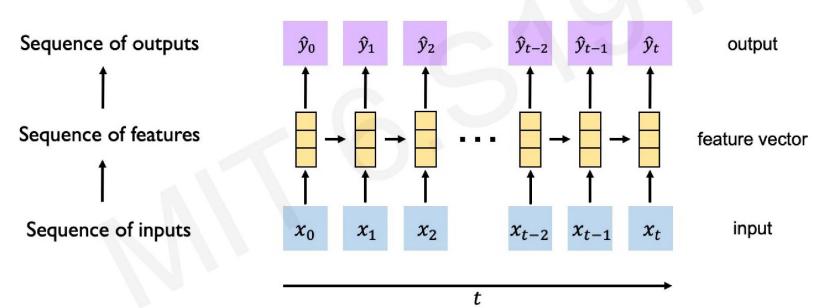
Limitations of Recurrent Models



Limitations of RNNs

- TEncoding bottleneck
- Slow, no parallelization
- 🧠 Not long memory

RNNs: recurrence to model sequence dependencies

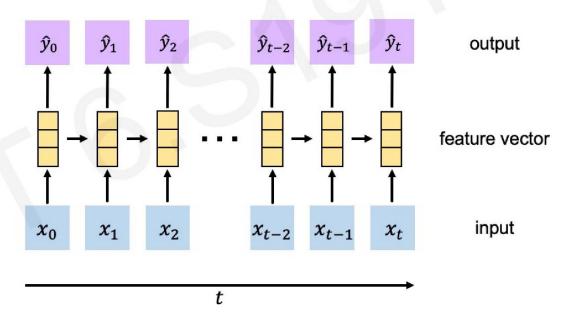


RNNs: recurrence to model sequence dependencies

Limitations of RNNs

Slow, no parallelization

Not long memory

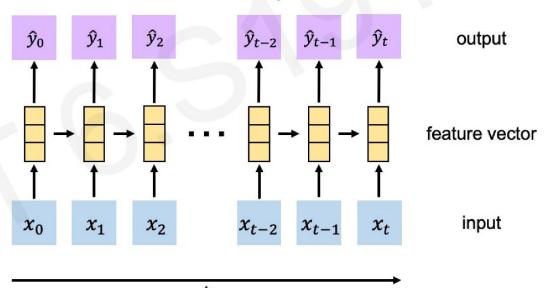


Can we eliminate the need for recurrence entirely?

Desired Capabilities

Parallelization

Long memory

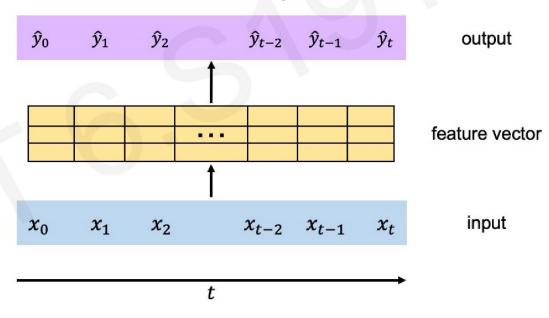


Can we eliminate the need for recurrence entirely?

Desired Capabilities

Parallelization

Long memory



Goal of Sequence Modeling

Idea I: Feed everything into dense network

✓ No recurrence

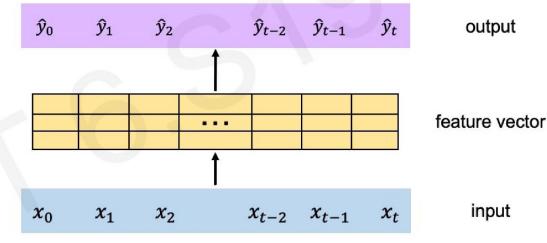
X Not scalable

X No order

X No long memory

Idea: Identify and attend to what's important

Can we eliminate the need for recurrence entirely?



|| 人工智能基本理论|

Attention Is All You Need

Intuition Behind Self-Attention

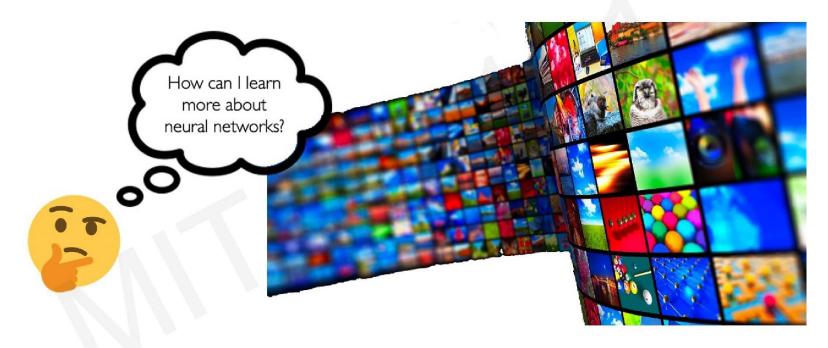
Attending to the most important parts of an input.

I. Identify which parts to attend to

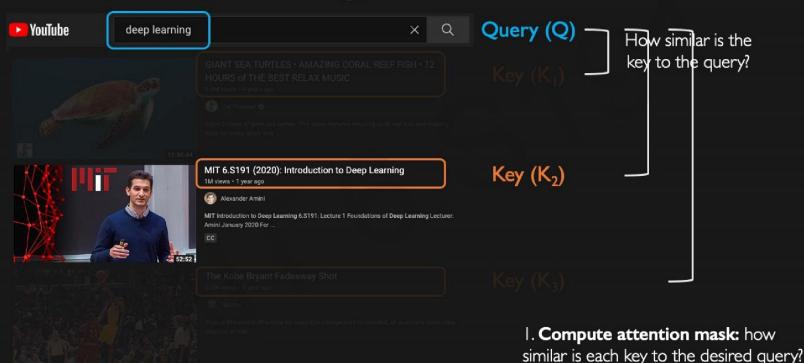
2. Extract the features with high attention

Similar to a search problem!

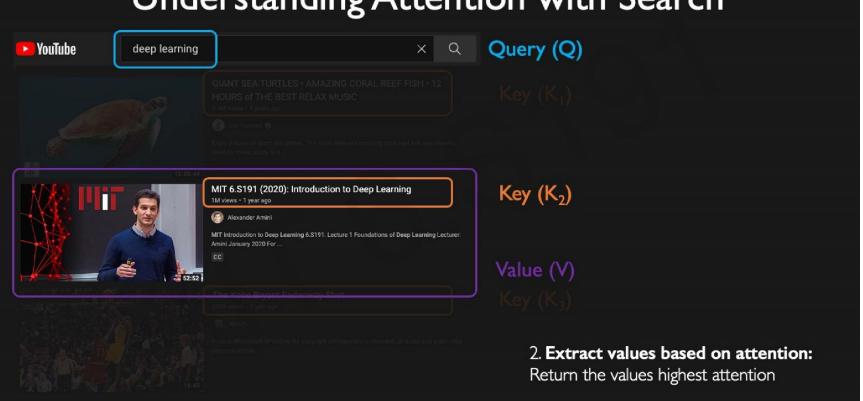
A Simple Example: Search



Understanding Attention with Search



Understanding Attention with Search



Goal: identify and attend to most important features in input.

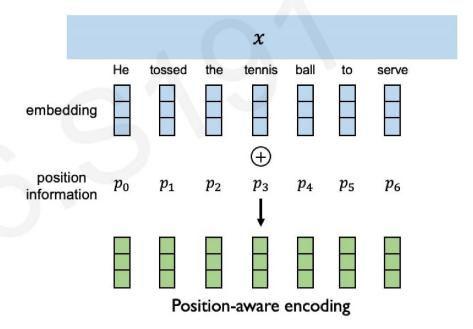


- 1. Encode **position** information
- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

Data is fed in all at once! Need to encode position information to understand order.

Goal: identify and attend to most important features in input.

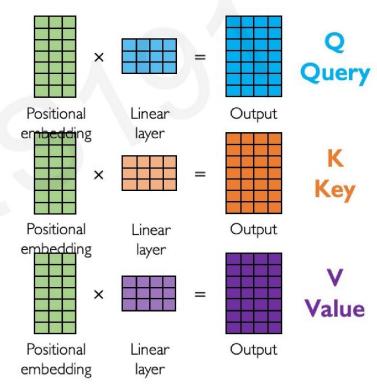
- 1. Encode **position** information
- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention



Data is fed in all at once! Need to encode position information to understand order.

Goal: identify and attend to most important features in input.

- 1. Encode **position** information
- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

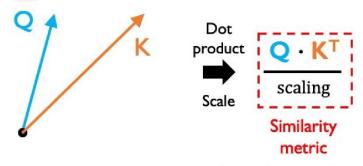


Goal: identify and attend to most important features in input.

- 1. Encode **position** information
- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

Attention score: compute pairwise similarity between each query and key

How to compute similarity between two sets of features?



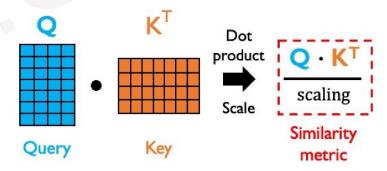
Also known as the "cosine similarity"

Goal: identify and attend to most important features in input.

- 1. Encode **position** information
- 2. Extract query, key, value for search
- Compute attention weighting
- Extract features with high attention

Attention score: compute pairwise similarity between each query and key

How to compute similarity between two sets of features?

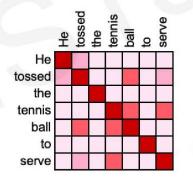


Also known as the "cosine similarity"

Goal: identify and attend to most important features in input.

- 1. Encode **position** information
- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

Attention weighting: where to attend to! How similar is the key to the query?



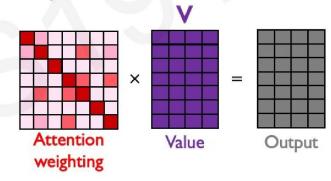
$$softmax\left(\frac{Q\cdot K^T}{scaling}\right)$$

Attention weighting

Goal: identify and attend to most important features in input.

- 1. Encode **position** information
- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

Last step: self-attend to extract features



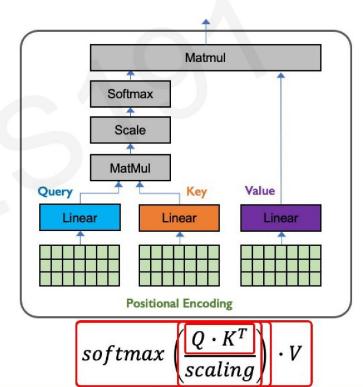
$$softmax\left(\frac{Q \cdot K^{T}}{scaling}\right) \cdot V = A(Q, K, V)$$

Goal: identify and attend to most important features in input.

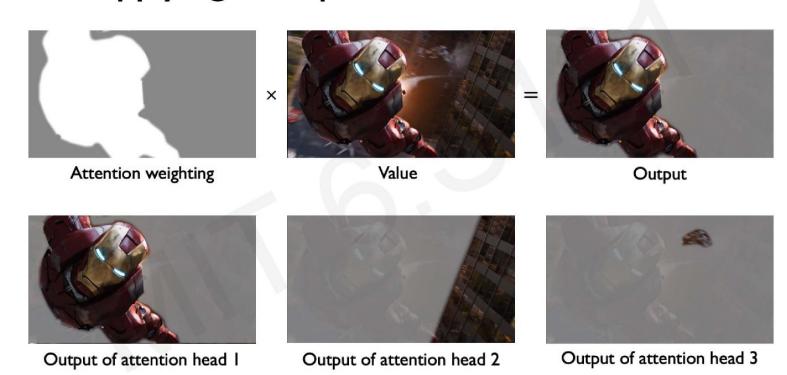
- 1. Encode **position** information
- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

These operations form a self-attention head that can plug into a larger network.

Each head attends to a different part of input.



Applying Multiple Self-Attention Heads



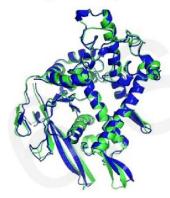
Self-Attention Applied

Language Processing

BERT, GPT-3

Devlin et al., NAACL 2019 Brown et al., NeurlPS 2020

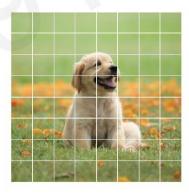
Biological Sequences



AlphaFold2

Jumper et al., Nature 2021

Computer Vision



Vision Transformers

Dosovitskiy et al., ICLR 2020

◎ 人工智能基本理论

Deep Learning for Sequence Modeling: Summary

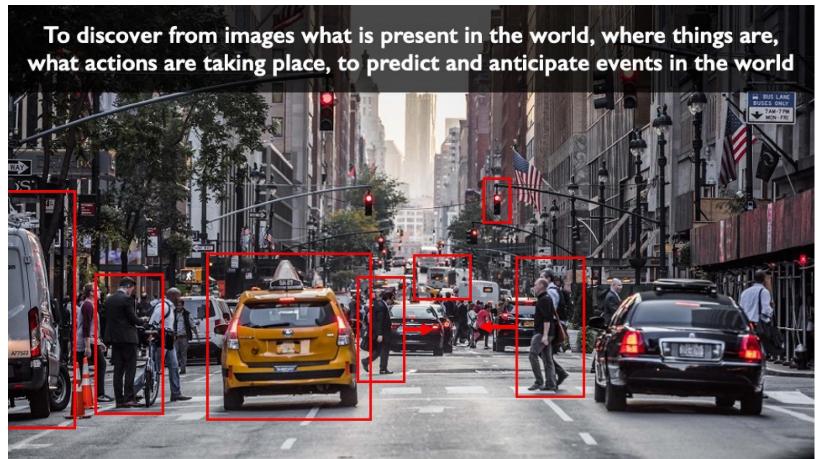
- 1. RNNs are well suited for sequence modeling tasks
- 2. Model sequences via a recurrence relation
- 3. Training RNNs with backpropagation through time
- 4. Models for music generation, classification, machine translation, and more
- 5. Self-attention to model sequences without recurrence

提纲

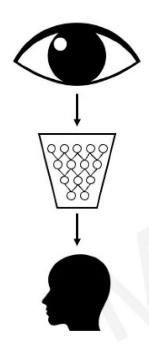
- 一、前馈网络
- 二、循环网络
- 三、卷积网络

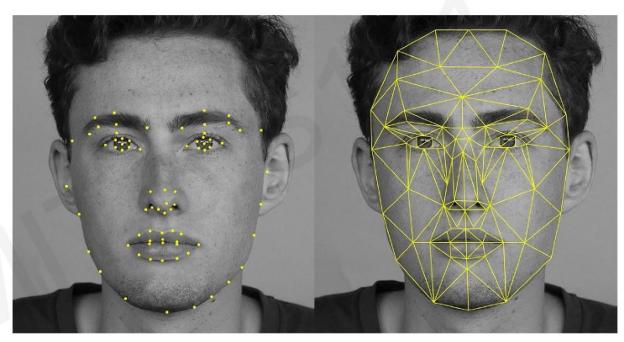
※ | 人工智能基本理论

人工智能基本理论

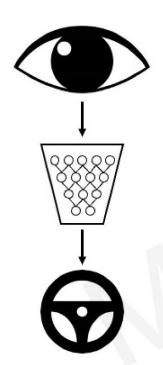


Impact: Facial Detection & Recognition





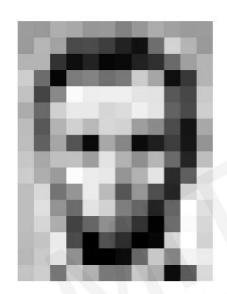
Impact: Self-Driving Cars

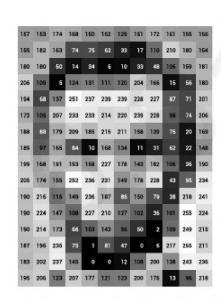


|| 人工智能基本理论|

What Computers "See"

Images are Numbers

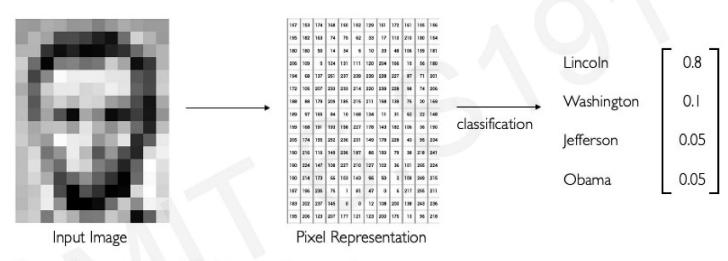




157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	166
189	97	166	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

An image is just a matrix of numbers [0,255]! i.e., 1080×1080×3 for an RGB image

Tasks in Computer Vision



- Regression: output variable takes continuous value
- Classification: output variable takes class label. Can produce probability of belonging to a particular class

High Level Feature Detection

Let's identify key features in each image category

Nose, Eyes, Mouth

Wheels, License Plate, Headlights

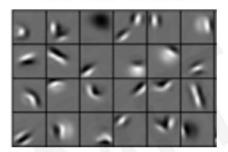
Door, Windows, Steps

Manual Feature Extraction

Learning Feature Representations

Can we learn a **hierarchy of features** directly from the data instead of hand engineering?

Low level features



Edges, dark spots

Mid level features

Eyes, ears, nose

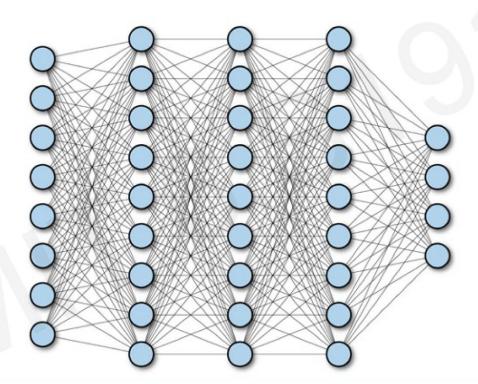
High level features

Facial structure

◎ | 人工智能基本理论

Learning Visual Features

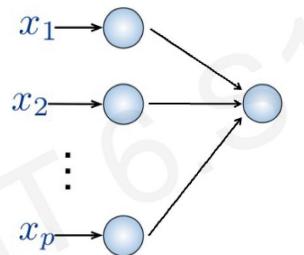
Fully Connected Neural Network



Fully Connected Neural Network

Input:

- 2D image
- Vector of pixel values



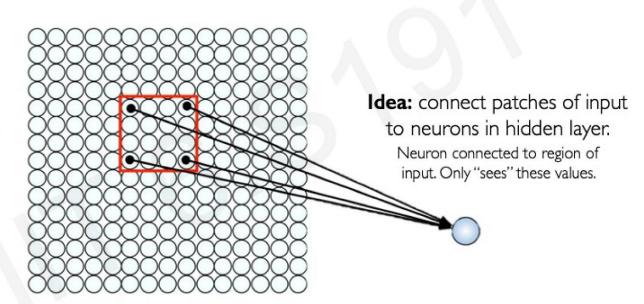
Fully Connected:

- Connect neuron in hidden layer to all neurons in input layer
- No spatial information!
- And many, many parameters!

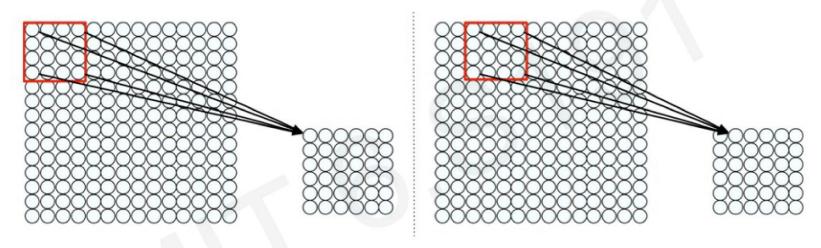
How can we use **spatial structure** in the input to inform the architecture of the network?

Using Spatial Structure

Input: 2D image. Array of pixel values



Using Spatial Structure



Connect patch in input layer to a single neuron in subsequent layer.

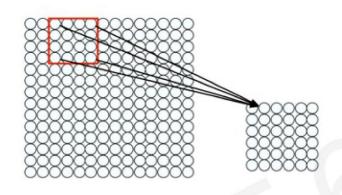
Use a sliding window to define connections.

How can we weight the patch to detect particular features?

Applying Filters to Extract Features

- 1) Apply a set of weights a filter to extract **local features**
 - 2) Use **multiple filters** to extract different features
 - 3) Spatially **share** parameters of each filter (features that matter in one part of the input should matter elsewhere)

Feature Extraction with Convolution



- Filter of size 4x4 : 16 different weights
- Apply this same filter to 4x4 patches in input
- Shift by 2 pixels for next patch

This "patchy" operation is **convolution**

- 1) Apply a set of weights a filter to extract local features
 - 2) Use multiple filters to extract different features
 - 3) **Spatially share** parameters of each filter

The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

1	1	1	0	0							press.		
0	1	1	1	0		1	0	1		4	3	4	
0	0	1,	1,0	1,	\otimes	0	1	0	=	2	4	3	
0	0	1,	1,	0.		1	0	1		2	3	4	
0	1	1,	0,0	0,,1	filter					feature map			

Producing Feature Maps

Original

Sharpen

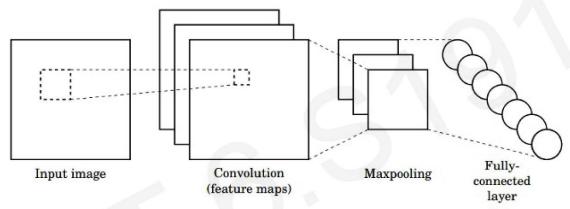
Edge Detect

"Strong" Edge Detect

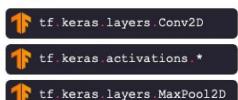
|| 人工智能基本理论|

Convolutional Neural Networks (CNNs)

CNNs for Classification



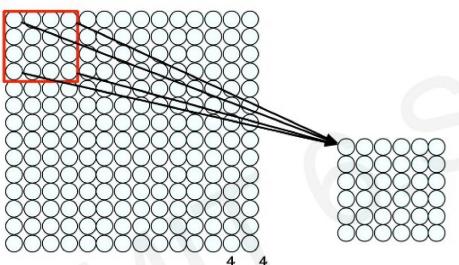
- 1. Convolution: Apply filters to generate feature maps.
- 2. Non-linearity: Often ReLU.
- 3. Pooling: Downsampling operation on each feature map.



Train model with image data.

Learn weights of filters in convolutional layers.

Convolutional Layers: Local Connectivity



tf.keras.layers.Conv2D

For a neuron in hidden layer:

- Take inputs from patch
- Compute weighted sum
- Apply bias

4x4 filter: matrix of weights w_{ij}

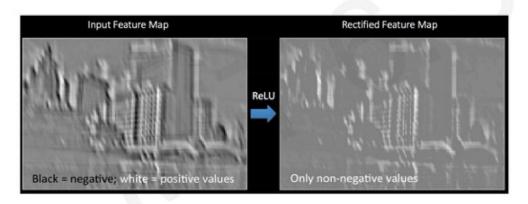
$$\sum_{i=1}^{4} \sum_{j=1}^{4} w_{ij} x_{i+p,j+q} + b$$

for neuron (p,q) in hidden layer

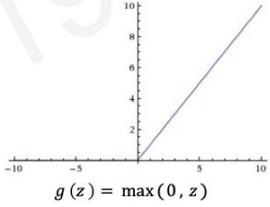
- 1) applying a window of weights
- 2) computing linear combinations
- 3) activating with non-linear function

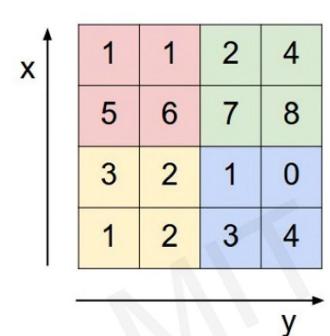
Introducing Non-Linearity

- Apply after every convolution operation (i.e., after convolutional layers)
- ReLU: pixel-by-pixel operation that replaces all negative values by zero. **Non-linear operation!**

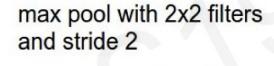


Rectified Linear Unit (ReLU)





Pooling



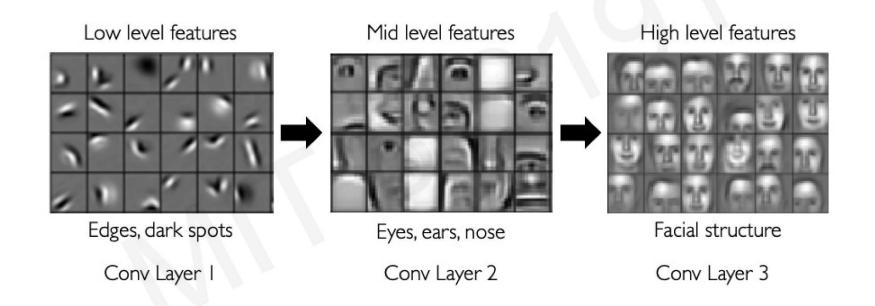
tf.keras.layers.MaxPool2D(
 pool_size=(2,2),
 strides=2
)

6	8
3	4

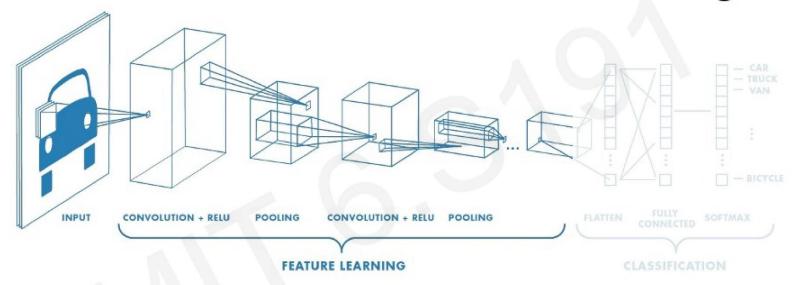
- 1) Reduced dimensionality
- 2) Spatial invariance

How else can we downsample and preserve spatial invariance?

Representation Learning in Deep CNNs

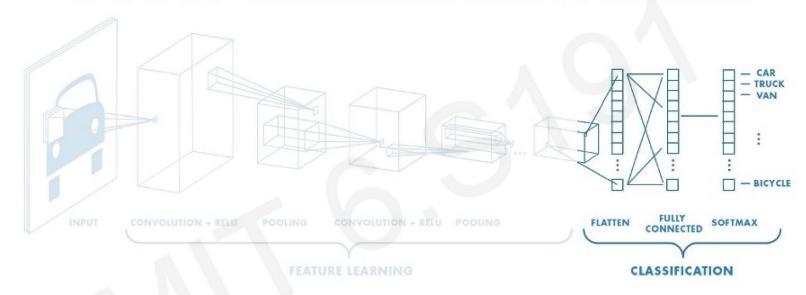


CNNs for Classification: Feature Learning



- 1. Learn features in input image through convolution
- 2. Introduce **non-linearity** through activation function (real-world data is non-linear!)
- 3. Reduce dimensionality and preserve spatial invariance with pooling

CNNs for Classification: Class Probabilities



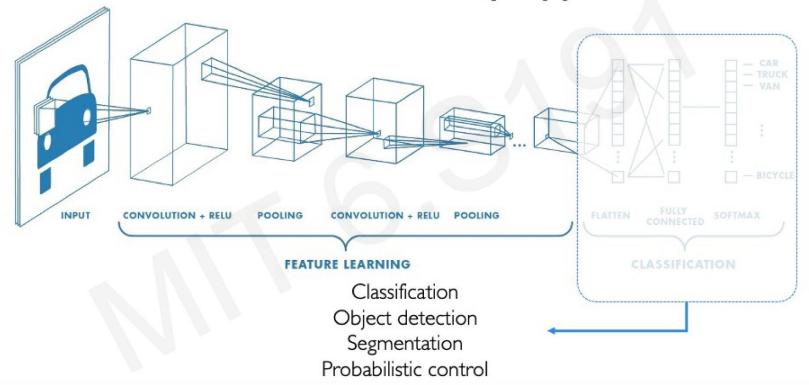
- CONV and POOL layers output high-level features of input
- Fully connected layer uses these features for classifying input image
- Express output as probability of image belonging to a particular class

$$softmax(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}}$$

※ 人工智能基本理论

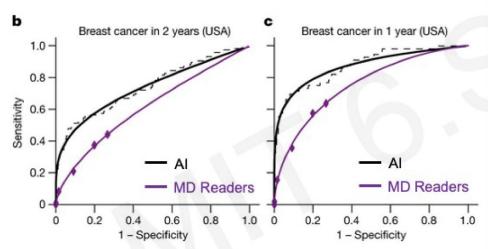
An Architecture for Many Applications

An Architecture for Many Applications

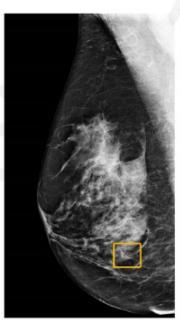


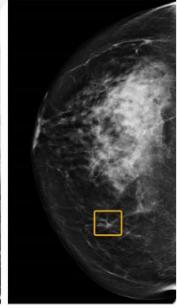
Classification: Breast Cancer Screening

International evaluation of an AI system for breast cancer screening nature



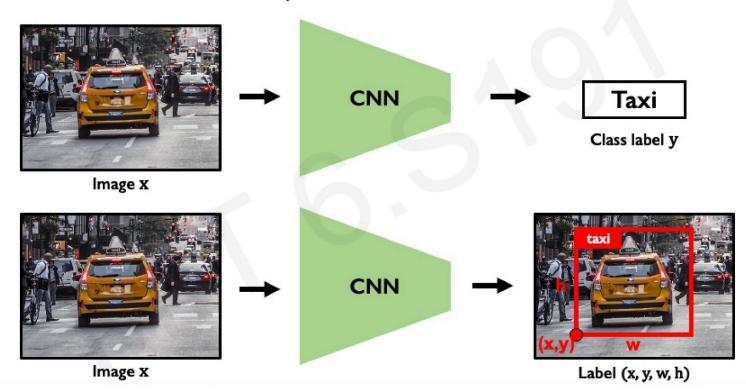
CNN-based system outperformed expert radiologists at detecting breast cancer from mammograms





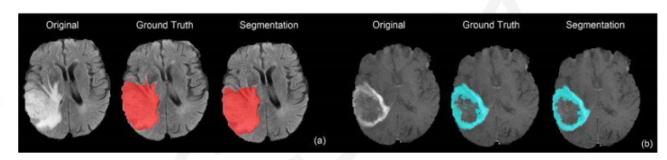
Breast cancer case missed by radiologist but detected by Al

Object Detection

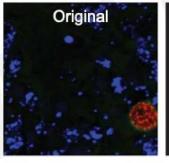


Semantic Segmentation: Biomedical Image Analysis

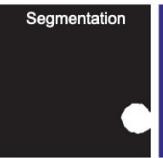
Brain Tumors
Dong+ MIUA 2017.

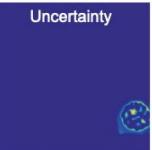


Malaria Infection Soleimany+ *arXiv* 2019.







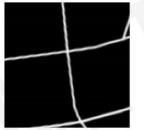


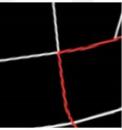
※ 人工智能基本理论

Continuous Control: Navigation from Vision

Raw Perception (ex. camera)

Coarse Maps M (ex. GPS)



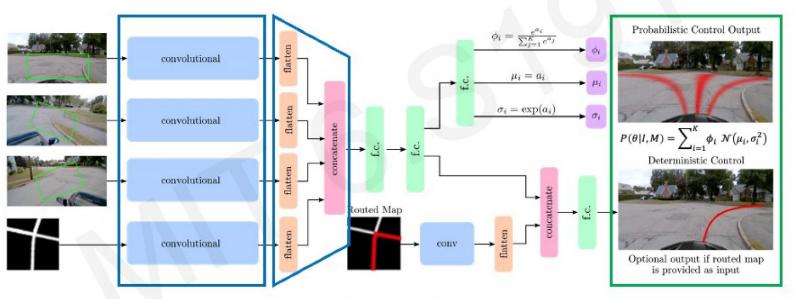


Possible Control Commands



End-to-End Framework for Autonomous Navigation

Entire model is trained end-to-end without any human labelling or annotations



 $L = -\log(P(\theta|I, M))$

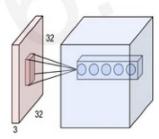
Deep Learning for Computer Vision: Summary

Foundations

- Why computer vision?
- Representing images
- Convolutions for feature extraction

CNNs

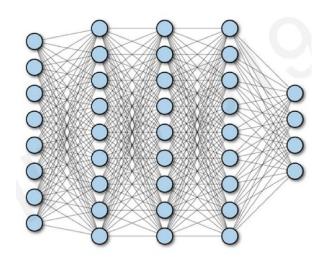
- CNN architecture
- Application to classification
- ImageNet

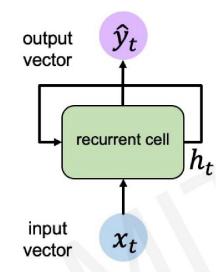


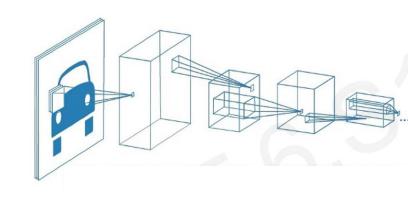
Applications

- Segmentation, image captioning, control
- Security, medicine, robotics

W 人工智能基本理论







前馈神经网络 MLP 循环神经网络 RNN

卷积神经网络 CNN

谢谢大家