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Abstract. This paper proposes a novel imitation learning approach for
the whole-body motion control of humanoid robots. Based on the in-
struction learning framework proposed in our prior work, we integrate
human motion capture data as a feedforward action in this paper, which
is combined with a feedback action driven by reinforcement learning to
achieve human-like whole-body movements. Compared to other imita-
tion learning methods, the proposed method can significantly enhance
the training efficiency due to the application of a feedforward action.
Furthermore, since the motion-mimic capability is mainly determined
by the feedforward action while the neural network only plays a role as
a stabilizer, it enables the control of multiple motion skills using a single
neural network. The effectiveness of the proposed method in whole-body
motion imitation learning is verified through several simulation tasks
performed on the Unitree H1 robot. The attached video can be found at
https://linqi-ye.github.io/video/icira25.mp4
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1 Introduction

With the escalating complexity of modern robotic applications, data-driven
learning methods have demonstrated substantial potential, especially the re-
inforcement learning (RL) algorithm, which aims to maximize a reward through
interactions with observations and environments. Many powerful RL methods
have been proposed, such as Proximal Policy Optimization (PPO) [1], Soft Actor
Critic (SAC) [2], and Curriculum Learning (CL) [3]. However, despite these ad-
vancements, directly applying these methods to achieve diverse and agile whole-
body motion control for complex humanoid robots often faces challenges related
to sample efficiency, the complexity of reward design, and the difficulty of ac-
quiring varied and robust policies for multiple skills within a single framework.

Imitation learning (IL), which integrates motion reference data into reward
functions to guide robotic agents. There have been many studies applying imi-
tation learning to robot locomotion, Behavior Cloning (BC)[4], an early direct



policy learning approach, in its relative research, researchers relied on Hidden
Markov Models(HMMs) to enable simple human-dance imitation on robot[5],
however, its effectiveness was often contingent on highly specific conditions and
a well-defined control strategy, or conversely, struggled in its absence. Subse-
quent advancements, from Dynamic Movement Primitives(DMPs)[6] to Varia-
tional Learning(VL)[7], addressed some control strategy limitations. Yet, these
methods often exhibited poor generalizability when trained with limited sam-
ple sizes.Inverse Reinforcement Learning(IRL)[8][9] emerged as a novel imitation
learning paradigm. While maximum margin-based IRL frameworks incurred high
computational costs, probabilistic models paved the way for data-driven deep re-
inforcement learning approaches. Peng et al. proposed a framework that enabled
the training of humanoid robots in virtual environments through the algorithm of
DeepMimic, yielding highly robust policies[10]. Nevertheless, this approach, too,
demands substantial quantities of data. A persistent challenge across these imita-
tion learning methods has been the arduous design of effective reward functions.
Generative Adversarial Imitation Learning(GAIL)[11][12] offered a solution to
this reward design problem, but its training process remains computationally
intensive and requires a large volume of high-quality demonstration data. In
general, the substantial data requirements, the key limitation of the inherent
incompleteness of real-world demonstrations and susceptibility to local optima
in imitation learning often hinder the acquisition of optimal policies [13].

Instruction learning as an alternative imitation learning strategy takes ad-
vantage of a feedforward action as an initial guide policy[14]. This feedforward-
guided policy optimization enables more efficient exploration of the policy land-
scape, as the learning process starts from a known motion, albeit suboptimal.
By refining this initial policy, agents achieve accelerated convergence to policies
that surpass the original demonstration’s performance. This method also miti-
gates the need for intricate reward shaping, as the feedforward itself provides a
strong directional cue, simplifying the learning problem and potentially leading
to more robust behaviors with reduced training complexity. Based on instruction
learning, we developed Unity RL Playground, which is a simple, yet efficient and
versatile framework for RL in mobile robotics[15]. Unity RL Playground is build
upon Unity ML-Agents[16] and tailored for robotic reinforcement learning. A key
feature is its ease of use and versatility to achieve various locomotion behaviors
for mobile robots. This characteristic significantly broadens its accessibility to a
wider research and development community. We leverage this framework for the
simulation training in this paper. However, the previous version of instruction
learning has adopted hand-crafted trajectories as feedforward, which is difficult
to extend to whole-body motion control.

Human motion data is crucial for whole-body imitation learning. Extensive
research has explored the integration of adaptive motion functions (AMFs) or
dynamics with RL for continuous gait design and control, yielding highly robust
control strategies[17][18]. Zhou et al. combined IL with biological data collected
in nature to instruct a multi-jointed robot to learn animal behavior[19]. Prior
research has extensively investigated the direct retargeting of human motion



capture data to humanoid robot kinematics[20][21][22]. Building upon this foun-
dation, the work[23][24] created a novel, large-scale motion dataset specifically
optimized for humanoid robot compatibility, which systematically adapts the
human-derived motions to ensure their kinematic and dynamic feasibility within
the operational constraints of real-world humanoid robot platforms.

Motivated by the aforementioned work, we take advantage of human motion
data to serve as a feedforward and thus extend instruction learning to whole-
body motion control. The contributions of this paper are summarized as follows.
First, we extend the instruction learning method to whole-body motion control
by applying human motion capture data as a feedforward action, which enables
humanoid robots to learn multiple motion skills efficiently through a single neural
network. Second, we verify the effectiveness of the proposed method in whole-
body motion imitation learning through several simulation tasks with the Unitree
H1 robot, which are presented in the attached video.

2 Method

The framework of the proposed method is shown in Fig. 1. Compared to the
previous version of instruction learning[14], the primary modifications lie in the
feedforward component and the reward aspect. The details are introduced in the
following.

Fig. 1: Framework

2.1 Feedforward Design

In this study, a retargeted joint angle reference from human motion data is
employed to define the robot’s feedforward action. With these predefined motion,
the robot will be trained to optimize the feedback action sequences, aiming to
achieve higher reward values.



Our dataset, sourced from AMASS Dataset[25], necessitated a retargeting
process for its integration into the Unity environment. This was primarily due
to fundamental discrepancies in their coordinate systems and angular represen-
tations: AMASS Dataset employs a Z-up orientation with joint angles recorded
in radians, whereas Unity utilizes a Y-up orientation and expresses angles in de-
grees. Subsequently, these transformed joint angles were converted into quater-
nion representations to ensure robust motion blending within the Unity engine.
The transformation as follows:
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2.2 Learning Settings

(A) Hyperparameters:
In this study, proximal policy optimization (PPO) is used as the reinforce-
ment learning algorithm. The hyperparameters of the corresponding network
are configured as follows: batch size 2048, buffer size 20480, beta 0.005,
epsilon 0.2, lambda 0.95, learning rate 0.0003, num epoch 3.

(B) Neural network:
The neural network architecture employs an actor-critic structure. The ac-
tor network is implemented as a Multi-Layer Perceptron (MLP) comprising
three hidden layers, each with 512 hidden units. Complementing this, the
critic network is also an MLP, featuring two hidden layers, each containing
128 hidden units.

(C) Observation:
The observations are

Ot =
[
brollt bpitcht

bvt bωt
ΘDoft Θ̇Doft

]
(2)

where brollt ,bpitcht represent the roll and pitch angles of the root(Unit: ra-
dian), bvt ,bωt

represents the linear velocity and angular velocity of the root,
ΘDoft ,Θ̇Doft are the joint angle,joint angular velocity, respectively, which
contains the same number of variables as the joint numbers of the robot.



(D) Action:
The action is a combination of the feedforward action, which is obtained
from human motion data, and a feedback action, which is a filtered output
of the neural network. The feedback action is expressed as

ufb = kku
last
fb + (1− kk)unn (3)

where ulast
fb represents the value of the feedback term from the preceding time

step, unn denotes the raw output of the actor network. Then, the feedback
action ufb is weighted by kb and combined with the feedforward component
to yield the final action:

utotal = kbufb + uff (4)

2.3 Reward Design
Instruction learning alleviates the complexities associated with traditional

reward engineering, thereby simplifying reward definition. In this study, we use
some simple reward components, which can be applied to all motion imitation
tasks.

(1) Alive reward:
ra is designed as ra = 1, its existence encourages the robot to maintain
balance and not fall. In all time steps before termination, the robot can
obtain this reward.

(2) Body reward:
rb is designed as

rb = −kr · (2 · arccos (|⟨qb, qref⟩|))− kp · ∥pb − pref∥ (5)
where qb,qref represents the orientation of the body expressed by a quater-
nion, pb,pref represents the real and reference body position.

(3) Feedforward switching processing:
Imperfections in feedforward compensation yield substantial state dispari-
ties across temporal frames preceding and succeeding a change in feedfor-
ward control paradigms. Such pronounced discontinuities impede the effec-
tive learning or optimization of the control policy during transitional phases.
To facilitate a robust feedforward transition, a specialized control scheme
adaptation is employed. During the initial temporal window subsequent to a
feedforward set update, the system’s reward evaluation is restricted to only
account for elemental survival objectives, thereby temporarily decoupling
the body-specific reward components from the overall objective function.

2.4 Episode Termination Condition
During the training process, the termination condition is set to:

2 · arccos (|⟨qb, qref⟩|) > 30 or ∥pb − pref∥ > 0.3 (6)
it indicates to terminate when the orientation or position of the robot is too far
from the reference.



2.5 Curriculum Learning

Our work introduces a generalized curriculum learning scheme which demon-
strably leads to faster convergence and enhanced training stability. We select
multiple motion tasks to train simultaneously. During the first ten million steps,
we train each motion for 300 seconds and then switch to the next motion, in
order to make sure that every action is fully practiced. When it comes to the
last two million steps, we spent 30 seconds training on each motion, namely
increasing the switching frequency, which can reduce the impact of forgetting
effectively.

3 Simulation

The simulations were conducted with Unity RL Playground. This platform was
selected for its proven efficacy in providing an efficient and user-friendly Re-
inforcement Learning (RL) development environment specifically tailored for
robotic applications. The discrete action timestep was set to 0.02 seconds. To
accelerate the training process, a parallelized learning paradigm was adopted,
leveraging 24 concurrent instances of the robot to train in parallel.

3.1 Simulation Settings

(A) Robot Model and Specifications:

The robot model utilized for simulation is the Unitree-H1 bipedal humanoid
robot, as depicted in the accompanying figure. This robot features a total of
19 revolute joints. Each leg possesses 5 degrees of freedom, comprising three
at the hip (Hip Y, Hip R, Hip P), one at the knee (Knee P), and one at the
ankle (Ankle P). Each arm has 4 degrees of freedom.The main specifications
of the Unitree-H1 robot are shown in Table 1(a)(b), and Fig.2 shows the
zero position of the robot.

(B) Feedforward data:

The feedforward component of our control strategy is generated from a
dataset of human motion capture, which has been meticulously retargeted to
ensure kinematic and dynamic compatibility with humanoid robots. Specif-
ically, our comprehensive feedforward set includes motions for golf, tennis,
guitar, violin, and general waving gestures.

(C) training settings:

kb = 30, kk = 0.9, kr = 0.01, kp = 1



(a) Joint Unit Limit Torques
Joint Type Limit Torque (Nm)
Knee Joints 360
Hip Joints 220
Ankle Joints 59
Arm Joints 75

(b) Joint Motion Ranges (rad)
Joint Type Motion Range (rad)
Hip Y -0.43 to +0.43
Hip R -0.43 to +0.43
Hip P -3.14 to +2.53
Knee P -0.26 to +2.05
Ankle P -0.87 to +0.52
Torso Y -2.35 to +2.35
Shoulder Pitch -2.87 to +2.87
Right Shoulder Roll -3.11 to +0.34
Left Shoulder Roll -0.34 to +3.11
Right Shoulder Yaw -4.45 to +1.3
Left Shoulder Yaw -1.3 to +4.45
Elbow Pitch -1.25 to +2.61

Table 1: Joint Specifications: (a) Torque Limits, (b) Motion Ranges

(a) Front view of H1 (b) Side view of H1

Fig. 2: Unitree-H1 zero position

3.2 Simulation Results
The process of our simulation is dived by tow parts, training and playing.

We design 13 motion tasks (some are repeated) for H1 robot to learn, the order
and name of these motion tasks are listed in the following. We repeated some
of the tasks for several times because they are more difficult to learn, and the
following results prove that our hypothesis is correct.

Index Motion Name Index Motion Name
1 golf drive poses 8 golf drive poses
2 golf drive poses 9 golf drive poses
3 tennis forehand left poses 10 tennis forehand left poses
4 tennis forehand left poses 11 tennis forehand left poses
5 guitar right poses 12 wave left poses
6 violin left poses 13 wave right poses
7 wave both poses

Table 2: Motion Tasks



We used reinforcement learning to train the robot for twelve million steps.
During training, we found that the reward decreased when the feedforward mo-
tion was switched, as shown in Fig. 3. This suggested that the policy network just
trained may forget the motion it just learned, implying that we use curriculum
learning to reduce the time allocated on each motion.
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Fig. 3: Cumulative Reward

As a result, despite the fact that the reward function decreases at motion
switch, the extent to which it decreases is gradually decreasing over time and
the reward stably remains at a relatively high value in the end.

(a) Golf (b) Tennis

(c) Violin (d) Wave

Fig. 4: Learned locomotion behavior

Fig. 4 depicts the trained H1 robot performing different motion tasks, but it
is difficult to objectively quantify and evaluate the training performance based
on visual observation alone. Therefore, we collected statistics on body position
and posture errors of the robot during playing, and conducted a comprehensive
analysis by combining them with charts.

In Fig. 5, the comparison results of "Average Error" and "Max Error" of seven
different tasks (golf, guitar, tennis, violin, wave both, wave left, wave right) are



shown. According to the difference in imitation accuracy, these tasks can be
divided into two categories.
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Fig. 5: Motion tracking error
One is tasks with good imitation effects, including guitar and three wave

tasks. The average error and maximum error of these tasks are both at a low
level. Their common feature is that the movements are mainly concentrated in
the upper limbs and the posture changes are small. These characteristics reduce
the complexity of action control, making it easier for the policy network to
converge to a stable solution, thereby achieving accurate imitation. Therefore, it
can be considered that upper limb actions that do not involve obvious movement
of the lower limbs are easier to master by the robot, and show good stability
and consistency in the reproduction process.

The other is tasks that are more difficult to imitate, including violin, golf
and tennis. These actions generally show high average and maximum errors,
especially golf and violin, where the error values are much higher than other
tasks. The reason for the difficulty in imitation is that the actions involve complex
multi-joint coordinated control, accompanied by significant trunk twisting and
lower limb movements. The results above offer us insights into the robot itself,



we may not deny that it is the structural bottleneck (each leg only has one ankle
joint) that severely limits its body coordination ability, leading to significant
deviations in the imitation process.

Considering the joint parameters displayed in Table. 1, one of the important
reasons for this phenomenon is that the ankle of the current robot platform
(Unitree-H1) has only one degree of freedom (ankle pitch), which limits the
flexibility of center of gravity adjustment and gait control. In subsequent work, it
is possible to consider introducing a hardware platform with higher joint freedom
(such as Unitree-G1) to improve the imitation accuracy and control stability of
highly dynamic and complex movements.
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Fig. 6: Tracking error with time

To further explore the imitation consistency of actions in different time peri-
ods, we selected two tasks, guitar with the smallest compound error and violin
with the largest compound error, and compared their tracking error with time(as
shown in Fig. 6). We employ the position error and rotation error to quantify the
deviations of the robot’s movement from the desired track. Specifically, the for-
mer is calculated as the Euclidean distance between the robot’s current position
and the desired position, while the latter is determined by the angular difference
between the robot’s current orientation and the target orientation. The results
show that guitar has a low tracking error in the entire time series(less than
0.1), reflecting the stability and robustness of the action imitation process. In
contrast, violin shows significant deviations in the middle and later stages(more
than 0.1), especially in its position tracking error, where there are significant
oscillations and fluctuations, reflecting the limitation of the controller’s ability
to cope with multi-joint coordination and lower limb dynamic balance tasks.

4 Conclusion

This paper proposes a method for learning whole-body movements of humanoid
robots based on instruction learning. By introducing human motion capture data



as feedforward signals and combining it with a reinforcement learning framework,
unified learning and control of multiple movements are achieved. Compared with
the traditional imitation learning method, this method uses reference trajecto-
ries as the initial strategy to guide the policy network to efficiently explore in
the policy space, significantly improving the training convergence speed and
reducing the risk of policy degradation. In addition, by building a simulation
environment on the Unity RL Playground platform and adjusting the action
switching frequency in combination with the curriculum learning strategy, the
model’s adaptability to multi-skill switching is further improved. The simula-
tion results show that this method has good generalization ability in a variety
of movements.

In order to further improve the imitation accuracy and stability of the system
in highly complex action scenarios, future work will introduce a robot platform
with higher lower limb freedom (such as Unitree G1) to enhance the overall action
coordination ability and reduce the impact of structural constraints on strategy
optimization, thereby achieving higher quality whole-body action learning and
control.
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