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Abstract—To realize the exquisite interaction and precise ma-
nipulation for the robot, in this article, we propose a multispectral
multimodal visuotactile sensor named M3Tac, which combines
visible, near-infrared, and mid-infrared imaging technologies for
the first time and can exceed the sensing ability of human
skin in terms of resolution (719 pixels/cm2), temperature sensing
range (-20∼130 oC), etc. The M3Tac can not only realize high-
quality sensing of deformation, texture, force, stickiness, and
temperature comparable to human skin but also can realize
proximity sensing that is lacking for human skin. To achieve
this, we not only design a multispectral imaging system with
an elastic film whose light penetrability can be regulated by
the brightness of the light, but also develop corresponding
algorithms, including the pixel-level force sensing with finite
element method (accuracy: ±0.023 N), the proximity perception
(accuracy: ±3.8 mm), the 3D reconstruction (accuracy: 0.33
mm), the super-resolution temperature sensing (accuracy: ±0.3
oC), the multimodal fusion classification (accuracy: 98%), and
the stickiness recognition (accuracy: 98%). Finally, we conduct
experiments to verify the effectiveness and application potential
of our research. This paper has supplementary material available
at https://sites.google.com/view/MTac-sensor.

Index Terms—Visuotactile sensing, Multimodal sensing, Mul-
tispectral imaging

I. INTRODUCTION

The exquisite interaction of humans with the world heavily
relies on the multimodal tactile sensation of the skin. Thanks
to the dense array of tactile receptors in the skin (as high
as 90 units/cm2 [1], [2] on the hand), humans are able to
perceive various attributes like temperature, texture, shape, and
stickiness through touch [3]. Similarly, for robots to realize
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Fig. 1. Applications of different wavelengths of light. Visuotactile sensors
combine UV and visible light: UVtac [5]; Visuotactile sensors in the visible
light band: GelSight [6] & DIGIT [7]; Visuotactile sensors combine visible
light and near-infrared: Tac [8].

complex and delicate manipulation like humans, they call for
tactile sensors with multiple modalities and high performance.
However, due to constraints of e-skin solutions [4] in the
manufacturing process and costs, designing a tactile sensor
with the desired attributes of high resolution, broad coverage,
and multifunctionality still remains a formidable challenge.

With advancements in optical imaging and computer vision
technologies, a novel field known as visuotactile perception
technology has emerged in robotics [6], [9], [10], which
offers high resolution, extensive coverage and stability at
low costs. Consequently, visuotactile sensors have shown
huge potential in areas such as force perception [11] and
texture detection [12]. However, existing visuotactile sensors
predominantly concentrate on capturing information within the
visible light spectrum, which limits the perceptible dimensions
and modalities of information, since light encompasses a vast
spectrum of physical information beyond visible colors [13].
As shown in Fig. 1, the wavelength can be divided into X-rays,
ultraviolet (UV) light, visible light, infrared light, etc. [14].
Different wavelengths of light have different physical proper-
ties, which can be applied in different fields. For instance,
X-rays have strong penetrating properties and are used in
industrial flaw detection and medical testing [15], UV can be
used for sterilization [16], and infrared is used in night-vision
monitoring equipment [17] or temperature detection [18].
Researchers have also tried to combine UV and visible light to
reduce the impact of the marker on the detection of the object’s
contour [5], which makes up for some of the shortcomings
of visible light imaging. Hence, if more wavelengths of light
can be fused, it may greatly extend the sensing capability of
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visuotactile sensors.
In this paper, we propose a multispectral multimodal vi-

suotactile sensor named M3Tac, which combines visible light,
near-infrared, and mid-infrared imaging technologies for the
first time and can exceed the sensing ability of human skin
in terms of resolution (719 pixels/cm2), temperature sensing
range (-20∼130 oC), functionality, etc. The sensor can not only
realize high-quality sensing of deformation, texture, force,
stickiness, and temperature comparable to human skin but also
can realize proximity sensing that is lacking for human skin.
The contributions of this paper are as follows:

• In the hardware aspect, we propose a high-resolution
multispectral sensing system with a unidirectional per-
spective latex film, which can simultaneously realize the
optical imaging in three different bands of 400∼700 nm
(visible light), 930∼950 nm (near-infrared), and 5.5∼14
µm (mid-infrared).

• In the algorithm aspect, we propose a sensing library
that includes the pixel-level force sensing and 3D re-
construction algorithms based on the near-infrared image,
the proximity sensing algorithm based on the visible-light
image, the super-resolution temperature sensing algorithm
based on the mid-infrared image, the stickiness sensing
algorithm based on the contact separation video, and
the multimodal information fusion-based classification
algorithm, respectively. The system can achieve a contact
force sensing accuracy of 0.023 N, a 3D reconstruction
accuracy of 0.33 mm, a proximity sensing accuracy of
3.8 mm, and a temperature sensing accuracy of 0.3 oC in
the range of -20∼130 oC.

• To achieve pixel-level force sensing, we develop an
automated acquisition & annotation system and propose
a force-sensing network named FSwint-MAP based on
the swin transformer, which is combined with finite
element analysis to estimate the force at each pixel.
Besides, we utilize the thermal residual effect to build a
super-resolution temperature data acquisition system and
propose a lightweight super-resolution network, which
can achieve 8× temperature data super-resolution.

• Finally, we test the performance of M3Tac through several
experiments, including fragile and lightweight objects
grasping, circuit board heat position detection, classifica-
tion of liquid with different temperatures, and underwater
pipeline anomalous hot spot detection experiment, which
show that M3Tac has a wide application in real-world
scenarios.

The rest of this paper is organized as follows. The related
work is reviewed in Section II. The hardware design is
detailed in Section III. Section IV presents the contact force
sensing algorithm, proximity perception algorithm, temper-
ature sensing algorithm, stickiness classification algorithm,
and multimodal fusion classification algorithm. Furthermore,
experimental validations are provided in Section V. Finally,
Section VI concludes this paper.

II. RELATED WORK

The application of tactile sensors can help robots acquire
information such as contact force [27], temperature [28],

material [29], etc, which is of great significance in improving
the perception and operation of robots. Current tactile sensors
have high detection accuracy, but it is still difficult to obtain
high-resolution tactile information due to the limitations of
the manufacturing process and cost. To tackle this, visuo-
tactile sensing technology [30] has been proposed and got
widely recognized in academia and industry due to its high
resolution and stability. Several visuotactile sensors, such as
GelSight [6], Insight [31], have been developed. These sensors
empower robots to perform complex tasks like cable manipu-
lation [32], fabric recognition [33], and grasping of underwater
objects [34]. Thus, the utilization of visuotactile sensors holds
great promise in enhancing the overall performance of robotic
operations. Next, we will review the current sensing tech-
nologies from four aspects: contact force sensing, proximity
sensing, temperature sensing, and multimodal sensing.

A. Force Sensing

Force sensing is one of the most important functions of
tactile sensors, which allows robots to sense the contact force
to facilitate manipulation. After years of development, visuo-
tactile sensors can obtain high-resolution tactile images along
with high-accuracy force perception. For example, GelSight
can achieve a force detection accuracy of 0.67 N by using
a convolutional neural network [6]. GelSlim can achieve a
detection accuracy of 0.32 N by using the finite element
method (FEM) in combination with a neural network [35].

Force sensing for visuotactile sensors can be divided into
data level and pixel level. Data-level force sensing can obtain
the position and force of the entire contact area [36], [37].
Pixel-level force sensing can not only segment the position of
the contact area but also acquire the tactile force data at each
pixel location. [38]. Although pixel-level force sensing pro-
vides better detection performance, it requires a huge amount
of data for sensors without markers, e.g., Insight collected and
labeled 187,358 samples at 3,800 randomly selected initial
contact locations to implement force sensing [31]. To solve
the difficulty of data annotation, we propose a fully automated
system for acquiring and annotating contact force at the pixel
level, which can simultaneously obtain high-precision data on
both the contact force and the contact position for each pixel,
leveraging finite element analysis to ensure accuracy.

B. Promixity Sensing

In addition to contact force sensing, proximity sensing
is also a hot issue in current tactile sensor research [39].
Proximity sensing enables the acquisition of the distance
between an object and the sensor prior to physical contact,
thereby affording the robot with increased planning time for its
operations. There are many ways to realize proximity sensing.
For example, Gilbert et al. designed an e-skin based on a
magnetosensitive sensor, which uses non-contact perception to
realize tasks such as virtual keyboards and dimming [40]. Ruth
et al. proposed a bimodal tactile sensor that enables proximity
and contact sensing based on capacitive sensors, which can
significantly improve robotic grasping capabilities [41]. Liu
et al. combined a triboelectric nanogenerator with a flexible
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TABLE I
HARDWARE COMPARISON OF M3TAC AND OTHER VISUOTACTILE SENSORS

Ref
Sensing skin

Lighting Imaging system
Modality

Modality switch
Material Marker Shape Vision Touch

GelSight [6] The coating gel Black points 2D RGB RGB ✘ ✔ ✘

TacTip [19] The black gel White pins 2D White RGB ✘ ✔ ✘

Zhang et al. [20] Thermochromic
material \ 2D White RGB ✘ ✔ ✘

Yu et al. [21] Thermochromic
material Black grates 2D White RGB ✘ ✔ ✘

HaptiTemp [22] Thermochromic
material \ 2D White RGB ✘ ✔ ✘

STS [23] Unidirectional
perspective gel \ 2D RGB RGB ✔ ✔ Switching lights

SpecTac [24] Transparent gel Fluorescent
marker 2D UV RGB ✔ ✔ Switching lights

Tac [8] Acrylic board \ 2D Near-
infrared

RGB +
Near-infrared ✔ ✔ Sync

FingerVision [25] Transparent gel Black points 2D \ RGB ✔ ✔ Sync
TIRgel [26] Transparent gel \ 2D White RGB ✔ ✔ Adjusting focus

M3Tac (Ours) Unidirectional
perspective latex \ 2.5D

Near-
infrared +

White

RGB +
Near-infrared +

Mid-infrared
✔ ✔ Sync

TABLE II
FUNCTIONAL COMPARISON OF M3TAC AND OTHER VISUOTACTILE SENSORS

Ref Force sensing Reconstruction Texture Shape Proximity Temperature Stickiness
Application environment

Light Dark

GelSight [6] ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✔ ✔

TacTip [19] ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✔

Zhang et al. [20] ✘ ✘ ✔ ✔ ✘ 5∼45 oC ✘ ✔ ✔

Yu et al. [21] ✔ ✔ ✔ ✔ ✘ 25∼31 oC ✘ ✔ ✔

HaptiTemp [22] ✘ ✘ ✔ ✔ ✘ 31∼50 oC ✘ ✔ ✔

STS [23] ✘ ✘ ✘ ✔ ✔ ✘ ✘ ✔ ✘

SpecTac [24] ✔ ✘ ✘ ✔ ✔ ✘ ✘ ✔ ✘

Tac [8] ✘ ✔ ✘ ✔ ✔ ✘ ✘ ✔ ✘

FingerVision [25] ✔ ✘ ✘ ✔ ✔ ✘ ✘ ✔ ✘

TIRgel [26] ✘ ✘ ✔ ✔ ✔ ✘ ✘ ✔ ✔

M3Tac (Ours) ✔ ✔ ✔ ✔ ✔ -20∼130 oC ✔ ✔ ✔

robotic arm to propose a touchless robot control framework
that allows interactive control without contact with the robotic
arm [42]. Saloutos et al. proposed a tactile gripper with high
sampling frequency by combining pressure sensors with time-
of-flight proximity sensors, which achieved a grasp success
rate above 90% while clearing over 100 items in an au-
tonomous clutter-clearing task [43], [44].

As shown in Table I, to attain proximity perception utilizing
visuotactile sensors, researchers have embarked on numer-
ous studies focusing on sensing skins, primarily comprising
transparent gel and unidirectional perspective gel technologies.
Transparent gel can achieve proximity perception but it is
difficult to achieve force perception or reconstruction because
the visual camera will pass directly through the film to detect
the objects outside. For example, Yamaguchi et al. designed
FingerVision [25], a fully transparent tactile sensor for sensing
skin, which is capable of directly observing the external

environment but cannot discern the texture of the object being
touched. To adapt to dark conditions, Zhang et al. proposed a
new sensor, TIRgel [26], which has LEDs mounted around the
sensing skin. This design ensures that the external illumination
surpasses the internal sensor brightness even in dimly lit
environments. An alternative approach involves employing
a unidirectional perspective gel as the sensing skin. The
transmittance of this gel is influenced by the differing bright-
ness levels on its two sides, enabling the transition between
proximity and contact sensing modes through the manipulation
of internal brightness within the sensor. For example, Hogan et
al. proposed the STS sensor [23], which integrates a special
translucent film that facilitates the transition between vision
and touch modes by adjusting the internal light brightness,
but it is difficult to work in dark conditions.

However, both the transparent gel and unidirectional per-
spective gel methods rely on time-division multiplexing of
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Fig. 2. Sensor overall design structure diagram. (a) The physical picture of M3Tac; (b) Overall structure of M3Tac; (c) Dimensions of M3Tac; (d) M3Tac
optical imaging schematic; (e) Unidirectional perspective latex film transmission schematic; (f) Optical bands used in M3Tac.

LEDs or adjustments to camera focus to alternate between
proximity and contact sensing. This, to a certain extent,
complicates the data acquisition process and necessitates pre-
cise control over the exposure time of the lighting elements.
Furthermore, these techniques face difficulties in accurately
estimating the distance of an object from the sensor when
operating in the visual mode.

C. Temperature Sensing

Temperature is a crucial physical attribute of any object, and
tactile sensors equipped with temperature-sensing abilities em-
power robots to detect and respond to variations in temperature
within the objects they interact with. Common methods of tem-
perature sensing include thermistors, thermocouples, etc. Rao
et al. proposed an electronic skin that can differentiate between
pressure and temperature at the same time, which combines

triboelectric nanogenerator (TENG) with a thermosensitive
electrode combining BiTO and rGO [45]. Husain et al. com-
bined a fabric with a metal wire and achieved temperature
measurement by measuring the resistance of the wire. While
these techniques ensure the acquisition of precise temperature
data, they are constrained by relatively low resolution [46].

In pursuit of achieving high-resolution temperature data, re-
searchers have explored the integration of visuotactile sensing
technology with thermochromic materials. Zhang et al. used
thermochromic materials to design a visuotactile sensor that
can sense temperatures from 5 to 45 oC, but this skin only
has four states: black, pink, blue, and white [20]. To obtain
a higher temperature detection accuracy, Chen et al. used the
hue model to analyze the color change of the temperature
sensing material and achieved a resolution of 0.4 oC in the
temperature range of 25∼31 oC [21]. Abad et al. proposed a
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thermochromic thin film with a fast temperature response and
used an LAB model for color-to-temperature mapping [22].

Although these methods can realize temperature sensing,
there are still two problems to be resolved:

• Limited temperature detection range. The diverse temper-
ature ranges encountered by robots in home service sce-
narios pose a significant challenge, as they often exceed
the detection capabilities of current sensors, thereby hin-
dering their practical applicability in such environments.

• Repeated calibration for each sensor. While temperature
sensing through the analysis of thermochromic material
color changes is feasible, the intricate relationship be-
tween the film’s thickness, material composition, and the
resulting color variation complicates the direct establish-
ment of a uniform, linear correlation between temperature
and color.

D. Multimodal Sensing

With the extension of robotic applications, a single func-
tional tactile sensor can no longer meet the task requirements
of robots in variable scenarios. In this case, the study of mul-
timodal tactile sensors becomes necessary. Most multimodal
tactile sensors only combine two functions, such as pressure
stimuli and temperature variations [47], tactile and proximity
sensing [48], etc. Furthermore, the low resolution of these
sensors makes it difficult to acquire information such as the
contours and textures of the objects in contact.

As shown in Table I and Table II, to realize high-resolution
tactile perception, researchers have made many improvements
on the basis of classic visuotactile sensors such as Gel-
Sight [6], TacTip [19], etc. For example, to realize high-
resolution temperature perception and texture perception, re-
searchers combined thermochromic materials with visuotactile
perception [20]–[22]. High-resolution proximity sensing was
also realized by designing special optical films or adjusting
the focal length [8], [23]–[26]. However, designing a tactile
sensor that surpasses human skin’s sensing capabilities, capa-
ble of concurrently achieving high-resolution texture, deforma-
tion, force, temperature, and proximity perception, remains a
formidable yet crucial research endeavor. Such a sensor would
represent a significant advancement in the field.

III. HARDWARE DESIGN

A visuotactile sensor usually consists of a sensing skin, an
imaging system, and a lighting system, which acquires tactile
information by analyzing the deformation, texture, and color
changes of the sensing skin through the imaging system. In
this paper, we design a high-resolution visuotactile sensor that
can acquire contact force, texture, proximity, and temperature
information simultaneously, as shown in Fig. 2(a)(b)(c). To
achieve this, we optimize the design of the sensor’s imaging
system, lighting system, and sensing skin.

The internal structure is shown in Fig. 2(d), to realize
the detection of light with a broad spectrum of wavelengths,
we design an imaging system that can detect visible, near-
infrared, and mid-infrared light simultaneously. The visible-
light camera is used for proximity sensing, the near-infrared

camera is used for shape and texture detection, and the mid-
infrared imaging system is used for temperature detection.
To realize proximity sensing, we design a film with special
optical properties, which looks opaque on the brighter side
and transparent on the darker side, as shown in Fig. 2(e).
By adjusting the brightness of different wavelengths of light
on both sides of the elastic film, we can realize selective
transmission of light. To control the light inside the sensor,
we design a fully enclosed sensor housing, in which the
visible light from the outside is brighter than that from the
inside, so the elastomer film is transparent to visible light. To
realize the detection of the deformation of the sensing skin, we
construct a near-infrared light field inside, in which case the
infrared light inside is stronger than that outside, and thus the
film becomes opaque to infrared light. Therefore, proximity
sensing is achieved through visible light where the sensing skin
looks transparent to visible light from inside, and the contact
information of the sensing skin is achieved through near-
infrared light where the sensing skin looks opaque to near-
infrared light from inside. In this way, our sensor can work on
two sensing modes of proximity and contact simultaneously,
without the need to switch lights to change the sensing mode.

A. Sensing Skin

The sensing skin is the core of the visuotactile sensors.
Most of the sensing skins [6], [38] are made of acrylic as
the support layer and elastic silicone as the deformation layer.
Although this structure has a large force-sensing range, it is
difficult to obtain contour information on objects with large
surface gradients. In this paper, we utilize an elastic film as
the sensing layer and replace the support layer by inflating
the film. To guarantee that the internal air pressure of the
sensor is greater than the external, we accomplished two parts
of the work: Firstly, we sealed the sensor, which not only
reduces the leakage of internal gas but also realizes a good
waterproof effect. Secondly, we also inflate the sensor through
the pressure stabilizing valve to ensure the stability of the
internal air pressure. This scheme has three advantages:

• Better perception of the contour information of the object
can be achieved. In addition to directly obtaining the
texture and shape of the object in contact, the stickiness
information of the object can also be analyzed through
the process of separating from the object in contact.

• No additional transparent support layer is required. The
wavelength detection range is 5.5∼14 µm for the mid-
infrared temperature sensor, but both acrylic and ordinary
glass can not pass through light with a wavelength above
5 µm, and special optics are not only expensive but
also less durable, which is not suitable for large-scale
commercialization. The structure of this elastic inflatable
film can skillfully avoid this problem.

• Faster thermal response is achieved. Since there is no
need for an acrylic support, the film structure has a faster
thermal response. As we tested, the temperature of the
film can vary from 30 oC to 75 oC in 820 ms, which
indicates a change rate of 54 oC/s.
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To achieve the switch between proximity and contact sens-
ing, we would like to have an elastic film that has a band-
pass filter-like effect. However, designing a highly elastic,
abrasion-resistant optical narrow-band filter film is generally
very difficult because expansion, stretching, and abrasion of
the elastomer can change the optical properties of the film.
To achieve stable and reliable optical filtering, we create a
silver film with high elasticity, durability, and stability. The
light transmittance of this film is related to the difference in
light intensity between the two sides of the film, with the
brighter side of the film showing stronger reflective properties
and the darker side of the film showing stronger transmissive
properties. Based on this physical phenomenon, we only need
to control the light intensity of different wavelengths of light
on the inside and outside of the film to realize the filtering
effect of different wavelengths of light.

Most previous studies [23], [49] on unidirectional perspec-
tive coatings used silicone materials. To ensure the film’s
elasticity, toughness, and wear-resistant performance under the
premise of being as thin as possible, we used latex as the main
material. This material can achieve the same thickness as silica
gel and has better elasticity and toughness, but the fabrication
process is also relatively complex. We cooperate with a latex
production factory to produce this special film. We control the
transmittance of the film by adjusting the proportion of silver
powder added and the thickness of the elastic film. When the
light intensity on both sides of the film reaches a certain gap,
the effect of unidirectional visibility can be realized. With
the help of this film, we can realize reversed unidirectional
properties for visible and infrared light by controlling the
brightness of light of different wavelengths.

B. Imaging System

To realize multifunctional tactile sensing, we design a sens-
ing system which simultaneously acquires optical information
in different wavelength bands.

To reduce the cost of the sensor, we use a charge-coupled
device (CCD) as the main imaging device. The wavelength
imaging range of the CCD is 350∼1000 nm, which includes
the UV band below 400 nm, the visible band of 400∼700
nm, and the near-infrared band of 700∼1000 nm. However,
prolonged exposure to UV light not only harms the human
body, but also limits its large-scale popularization due to the
high cost of UV narrow-band filters, so we decided not to
apply UV light in M3Tac.

Besides visible light information, light also contains temper-
ature information. Due to the existence of internal thermal mo-
tion, an object will constantly radiate electromagnetic waves in
all directions, which are the infrared waves with a band located
between 0.75 and 100 µm [50]. The temperature range of most
objects in life is mostly in the -5∼110 °C range [51], and the
MLX90640 can detect temperatures in the range of -40 to 300
°C, which can meet the demands in most scenarios of life.
Therefore, we add mid-infrared light into the imaging module
to realize temperature sensing. Since longer wavelength light
will require more specialized instruments for detection, which
is not only costly but also large and not easy to install and

Fig. 3. Internal structure of the imaging system. Top: Structure diagram of
the imaging system; Bottom: Exploded view of the imaging system.

deploy on tactile sensors. Therefore, we finally adopt the light
of three bands in M3Tac: visible light, near-infrared light, and
mid-infrared light.

As shown in Fig. 3, the imaging module consists of a
visible-light imaging unit, a near-infrared imaging unit, and a
mid-infrared imaging unit. First, the visible-light imaging unit
consists of a CCD sensor, a 400∼700 nm bandpass filter, and a
lens. The near-infrared detection unit consists of a CCD sensor,
a 930∼950 nm bandpass filter, and a lens. Band-pass filters
can eliminate the effect of other bands of light on detection.
MLX90640 is used as the mid-infrared imaging unit, which
can achieve wavelength detection between 5.5∼14 µm. It has
characteristics of low cost, small size, and a wide temperature
sensing range. The resolution of MLX90640 is 24×32, and the
maximum sampling rate can be 1 Mhz, but a high sampling
frequency will cause a decrease in its detection accuracy. To
achieve a higher detection accuracy, we use the sampling
frequency of 4 Hz. In addition, the MLX90640 sensor includes
two models, D55 and D110, of which the D110 has a field
of view of 110o, and the D55 has a field of view of 55o. To
obtain a larger detection area, we chose the MLX90640-D110
as our mid-infrared imaging unit.

C. Lighting System

The transmittance of the elastic film we designed is affected
by the light intensity, so we can adjust the intensity of different
light to control the film’s transmittance under different wave-
length bands. Firstly, to realize the effect of opacity under
near-infrared light, we need to make the intensity of infrared
light inside the sensor greater than that outside. Therefore,
we installed an array of 940 nm near-infrared LEDs inside
the sensor and used a uniform light board to ensure the
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uniformity of the internal light. Secondly, to realize the effect
of transparency of the elastic film under visible light, we need
to ensure the intensity of visible light inside the sensor is
weaker than that outside the sensor. Since the entire sensor
is a sealed structure, there is no other light source inside the
sensor except for the 940 nm light. So in a bright environment,
the intensity of visible light outside of the sensor is greater than
that inside. To further guarantee that the sensor works even in
dark conditions, we install an LED ring on the outside edge
of the sensor to ensure that the intensity of visible light on the
outside of the sensor is always greater than that on the inside,
as shown in Fig. 2(b).

Through continuous optimization and improvement of the
sensing skin, imaging system, and lighting system, the sensors
can work indoors, outdoors, and in dark conditions. To better
demonstrate this, we adopt a spectrometer to detect the light
intensity in sunlight, indoors, darkness, and the inside of the
sensor, the results are shown in Fig. 4. From the results, we can
see that the light intensity inside the sensor peaks at 940 nm,
with an intensity of 4800 dn1, and the intensity of the other
bands is almost 0. The light intensity in sunlight is mainly
concentrated in the range of 450∼750 nm, with an intensity
of 1000∼1800 dn, the light in indoor environments is mainly
concentrated in the range of 450∼650 nm, with an intensity
of 20∼60 dn, and the intensity of each band under dark
conditions is almost 0. Therefore, both in sunlight and indoor
conditions, the sensor can meet the visible light intensity inside
is less than outside, and the infrared light intensity inside is
stronger than outside. To adapt the sensor to dark conditions,
we also mounted LEDs on the edge of the sensor’s sensing
skin, which allows the sensor to work in dark conditions.

Fig. 4. Spectrograms of different scenes. (a) Sensor internal; (b) In sunlight;
(c) Indoor; (d) In the dark.

IV. ALGORITHM DESIGN

M3Tac can not only realize the functions of contact force
sensing, texture sensing, and 3D reconstruction that traditional
visuotactile sensors have but also realize proximity sensing and
high-resolution, wide-range temperature sensing. Here, we will
introduce the sensing algorithms one by one.

1Digital Number (dn) is a raw, uncalibrated digital value that represents the
brightness of a pixel in a remote sensing image.

Fig. 5. Pixel-level automated acquisition & annotation platform. (a) Images
captured by the near-infrared camera; (b) Images captured by the visible-
light camera; (c) The mask of the contact position is obtained from threshold
processing of the visible-light image.

A. Contact Force Sensing (calibration: near-infrared & visi-
ble; sensing: near-infrared)

Compared to data-level force sensing, pixel-level force
sensing has a higher resolution but also requires more data. To
tackle this, we propose a pixel-level automated acquisition &
annotation platform, which can realize contact force sensing
using industrial force sensors (ATI Gamma force sensor) as
well as pixel-level contact area segmentation with the help of
multispectral imaging. To obtain the force distribution of each
pixel at the contact area, we establish a finite element model of
the inflatable elastomer and propose a pixel-level force sensing
network based on a swin transformer [52].

1) Pixel-level automated acquisition & annotation plat-
form: M3Tac can acquire both visible-light and near-infrared
images. As shown in Fig. 5(a), the near-infrared image is
related to the deformation of the elastic film only, which
can be adopted for accurate and stable contact force sensing.
The visible-light image is related to the contact position
information. The elastic film is transparent in visible light, and
we can see from Fig. 5(b) that the contact position between the
film and the probe will be obviously darkened in the visible-
light image. So we can quickly and efficiently get the mask
information of the contact position through the color threshold
processing algorithm, as shown in Fig. 5(c). Considering
that the mask will have an offset error when the distance
of the probe from the lens changes, we apply displacement
compensation to get accurate annotation information.

The purpose of displacement compensation is to minimize
the deviation between visible and near-infrared images, which
mainly consists of four parts: intrinsic parameters calibration,
image cropping, perspective transformation, and sampling
fine-tuning, as shown in Fig. 6. First, we perform the intrinsic
parameters calibration using the method described in [53],
which can reduce the effect of camera lens aberrations on
imaging. In the second part, we capture two sample images
after calibration. Next, we crop down the circular area on the
sensor surface, and we can see from Fig. 6 that the circle is still
distorted. To obtain a regular circle, we next correct the circle
using the perspective transformation method [54]. To further
minimize the error, we will take several samples with different
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positions and fine-tune the image by rotating and translating
them. Finally, we will get the image after alignment. Keeping
the parameters obtained from the above algorithm, batch data
acquisition can be performed.

Fig. 6. The displacement compensation algorithm. (a) Intrinsic parameters
calibration; (b) Image acquisition; (c) Image cropping; (d) Perspective trans-
formation; (e) Sampling & fine tuning; (f) Recording parameters and testing.

Based on this principle, we propose an automatic pixel-
level force sensing data acquisition & annotation system, as
shown in Fig. 5(d). Compared with other annotation systems,
the proposed annotation system can not only automatically
obtain the contact force information, but also obtain the
contact position information, which greatly reduces the cost
of acquiring the dataset. In the system, black probes are used.
This is because compared to the white color, the black probe
will be more visible in the visible light imaging, as shown
in Fig. 7, and near-infrared imaging is independent of the
color of the contact object. Since the force sensing algorithm
we proposed only needs to acquire near-infrared images (in
the experimental stage), the force sensing performance of this
sensor is not affected by the color of the object. Based on this
annotation system, we can obtain more than 50,000 pixel-level
annotation data in one day, which plays a significant role in
promoting the industrialization of visuotactile sensors.

Fig. 7. Detection results of cameras of different bands.

2) Finite element analysis: Although calibration using in-
dustrial force sensors can obtain an accurate total force, it is
not possible to obtain the force at each pixel of the contact
area. To estimate the contact force at each pixel as accurately
as possible, we model the elastic inflatable film using finite
element analysis to simulate the non-linear elastic behavior
of interaction between the membrane and the force sensor.
We apply COMSOL multi-physics simulator [55] to conduct
finite element analysis, which is a powerful tool to simulate
the behavior of various physical phenomena. Specifically, we
utilize the Ogden material model to replicate the real-world,
non-linear elastic behavior of the membrane in contact with the
sensor. The Ogden material model [56] is a common method
for large-strain contact condition analysis of biomaterials, soft
tissues, and rubbers, which shows excellent performance for
large deformations compared to traditional models such as
Mooney-Rivlin or Neo-Hookean [57].

The strain energy density function in the Ogden model is
defined as

ω =
3

∑
i=1

µi

αi
(λ αi

i −1), (1)

where ω stands for the strain energy, {µi}3
i=1 are the material

parameters, {αi}3
i=1 are dimensionless material parameters,

and {λi}3
i=1 denote the principal stretches. In COMSOL, the

strain energy function of the Ogden model can be directly
incorporated into the Material node. Regarding the establish-
ment of material constants, we referred to classical Ogden
parameters for natural rubber, and the detailed calculation
process is outlined in in [58], [59]. Once the model is set up,
COMSOL utilizes the FEM to numerically solve the underly-
ing equations, thereby allowing us to observe the stress-strain
behavior under different scenarios. The parameter of Ogden
is set as µ1 = 0.63 MPa, µ2 = 1.2 kPa, µ3 = −0.01 MPa,
α1 = 1.3, α2 = 5, and α3 = −2. The membranes are almost
incompressible, so the bulk modulus [60] is set to κ = 10
kPa. Further, to simulate the pressure from air compressed
the membranes, the pressure-density relation is leveraged,
assuming that the confined air is adiabatic. Therefore, the
pressure of confined air under deformation can be written as

P = (ρ/ρ0)
γ P0 = (V0/V )γ P0, (2)

where P, P0, ρ , ρ0, V , and V0 denote air pressure, density,
and volume after and before deformation, respectively. The
constant γ is the heat capacity ratio set as γ = 1.4. Given the
calculated P, the load on the inner side of membranes will be

∆P = P−P0 = P0
(
(V0/V )γ −1

)
. (3)

Measured by professional instruments, we know that the
air pressure inside the M3Tac is 5 kPa above standard air
pressure, and the thickness of the elastic film is 0.2 mm.
In the simulation, we set the original air pressure inside
membranes as P0 = 0.106 MPa, which denotes extra pressure
of 5 kPa added to standard air pressure. To facilitate the
analysis and calculations, we make two assumptions here: 1)
The boundary effect of the inflatable elastomer is ignored. 2)
Like previous work [61]–[63], we ignore the effect of gravity
on the perception algorithm in our experiments.
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Fig. 8. Finite element analysis. (a) The initial state; (b) When contact occurs
without sealing; (c) When contact occurs with sealing; (d) A cylinder of 7.5
mm diameter and 1.5 mm height in contact with an inflatable film; (e) (f)
(g) Distribution of forces in the X, Y, and Z directions; (h) The mask of the
contact position; (i)(j)(k) Distribution of forces in the X, Y, and Z directions
after combination with the mask.

To simplify the calculation, we study a slice of an original
3D model and ensure the equivalence of the study through
geometric symmetry, the results obtained are shown in Fig. 8.
From Fig. 8(a)(b)(c)(d), we can see that the contact force
occurs at the center when the interior is not inflated, while
in the inflated state, the contact force is mainly concentrated
at the edges. By decomposing the contact force, we can
get the contact force information of the contact position in
X, Y, and Z directions, and ensure the consistency of each
dimension by normalization, the results obtained are shown in
Fig. 8(e)(f)(g)(i)(j)(k).

3) Contact force sensing algorithm: In recent years, a
large number of transformer structures [64]–[66] have been
used for tasks like image segmentation and depth estimation
due to their excellent performance. Among them, the swin
transformer [52] stands out due to its local self-attention
layers, hierarchical feature mapping, and lower computational
complexity, making it a universal backbone in the field of
computer vision. In the task of force estimation, where the pre-
diction of dense force distribution is required, the hierarchical
structure of the swin transformer is particularly advantageous.

Additionally, the U-Net structure [67] is commonly em-
ployed in various medical imaging tasks. Its skip connections
effectively facilitate local-global semantic feature learning.
For force distribution maps represented after finite element
analysis, local features aid in learning the surface variations of
the force map, while global features help learn the magnitude
of the force values. To combine both strengths, we employ
the transformer-based U-shaped encoder-decoder architecture
proposed in [68]. This architecture has been verified to yield
the best results in our experiments.

To obtain a more accurate distribution of contact force, we
combine the results of finite element analysis with the contact
force and propose a new force-sensing network, FSwint-MAP,
as shown in Fig. 9. The input of the network is a 224×224
near-infrared image.

The force distribution map effectively represents the forces
at different positions in the contact area between the probe and

the film. The peak force map not only indicates the magnitude
of the total contact force, but also directly outputs the forces
in three separate X, Y, and Z directions, representing the
magnitude of the force and the contour of the force-receiving
area. We use the smooth L1 loss for these two different
outputs, with the loss function L being:

L = β1LPFM +β2LFDM, (4)

where LPFM denotes the loss of the peak force map, and LFDM
denotes the loss of the force distribution map. β1 and β2 are
adjustable parameters. During the training process, we set β1
and β2 to 1. Without using a pre-trained model, we input the
near-infrared images directly into the network for training and
use the peak force map and force distribution map as labels.
FSwint-MAP is trained using an Nvidia 3090 GPU and an
AMD 3990X CPU, with a batch size set to 72. The model is
trained for 35 epochs with a learning rate of 0.0001.

After training, we will post-processed the output. The output
of the neural network is the contact area Seg between the probe
and the sensed skin, the total force Fk, and the distribution of
the force Mk, k ∈{x,y,z}, k denotes the component of the force
in the x,y,z directions. After obtaining Seg, Mk, Fk through
neural networks, we first compute the total force Tk, for all
pixels (i, j) in Mk:

Tk = ∑
i, j

Mk(i, j),(i, j) ∈ Seg. (5)

Finally, we divide the total force by the sum of the individual
pixel points by multiplying by the value of each pixel point
to get the distribution of the force at each pixel Resk(i, j):

Resk(i, j) = Fk/Tk ×Mk(i, j). (6)

B. Proximity Perception (visible light)

Although robots can obtain stable and reliable contact force
information through contact sensing, proximity sensing is
also important when performing the grasping of some fragile
objects. To obtain the distance between the object and the
sensor, we propose a proximity perception method.

As shown in Fig. 10(a), since the film looks transparent
for visible light, the visible-light camera can see a shadow
of the object on the film. As the distance from the object
to the sensor changes, the sharpness of the image detected
by the visible-light camera through the film changes. The
closer the object is to the sensor, the higher the sharpness it
produces, and when in complete contact the shadow is almost
purely black. Based on this principle, we propose a proximity
perception algorithm, as shown in Fig. 10(b). We first remove
the influence of background on proximity perception by the
background difference method and then reduce the influence of
noise by the filtering algorithm. Since we use the background
difference method, the influence of light will produce some
noise. To better extract effective information, we introduce a
noise threshold and invert these invalid regions.

For M3Tac, it is difficult for us to obtain information
about the depth of an object in space as in a depth camera,
so we use the closest distance between the object and the
tactile sensor as the detection value. We take the minimum
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Fig. 9. Contact force sensing algorithm: FSwint-MAP.

Fig. 10. Proximity perception. (a) Proximity test of objects at different distances; (b) Proximity sensing algorithm.

Fig. 11. 3D reconstruction. (a) 3D calibration platform; (b) 3D reconstruction algorithm.

intensity value of the pixel after processing and establish
an equation between this value and the distance, through
which the distance between the object and the sensor can
be estimated. Finally, for better visualization, we map the
obtained distance to a colormap.

C. 3D Reconstruction (near-infrared)

3D reconstruction is one of the most important functions of
visuotactile sensors. The current 3D reconstruction technology
mainly uses the photometric stereo method, which calculates
the normals based on the brightness of different colored rays
on the sensor surface. Although the photometric stereo method
has a high degree of versatility, its accuracy is greatly affected
by the position and uniformity of the light. Generally speaking,
the photometric stereo method requires the use of three colors
of lights to ensure the existence of a certain angle difference

between the lights of different colors, which puts forward high
requirements on the design of the sensor. In particular, the
proposed sensor M3Tac employs an inflatable elastic film, on
whose surface it is very difficult to realize the illumination of
multiple lights at a certain angle.

Thanks to the sealed structure of the sensor and the mount-
ing of the uniform light board, uniform illumination of near-
infrared light can be realized on the surface of the sensor,
and the lighting intensity is related to the distance of the
sensing skin from the uniform light board. When the sensor
is in contact with an object, the area closer to the light is
more luminous, and using this luminance information the
reconstruction of luminance information on the sensor surface
can be realized. However, in addition to the contact area, its
boundary area will appear as a shadow due to the occlusion
of the contact area. Since we only use one type of light,
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Fig. 12. Super-resolution temperature perception. (a) Temperature data acquisition platform; (b) Low-resolution temperature image; (c) High-resolution
temperature image; (d) Temperature super-resolution algorithm, which employs the ACmix organically fusing convolutional neural network and self-attention
mechanism and progressively realizes super-resolution.

it is difficult to separate the shadow part. To exclude the
interference of the shadow part on the reconstruction, we
propose a two-step reconstruction scheme, which first obtains
the information of the contact region through the contact area
segmentation network, and then realizes the reconstruction of
the contact region based on the brightness. This approach not
only avoids the influence of shadows on the 3D reconstruction,
but also accurately obtains the contact information, and its
realization process is shown in Fig. 11(b).

To obtain the relationship between luminance and depth, we
design a calibration system, as shown in Fig. 11(a). Unlike the
photometric stereo method, we do not need to solve for the
normal directions corresponding to different pixels, we only
need to establish an equation for luminance versus depth by
fitting the equation, i.e.,

D(i, j) = F(B(i, j)) , (7)

where B(i, j) and D(i, j) denote the brightness and depth of
the (i, j) pixel in the image, and F(·) is the fitting function
obtained by calibrating the image.

D. Temperature Sensing (mid-infrared)

High-resolution temperature information acquisition is very
challenging. The traditional method of using thermocouple
arrays makes it difficult to achieve high resolution, while
infrared thermometry provides a new way to achieve high-
resolution temperature detection.

The high-resolution mid-infrared temperature measurement
device is costly. For a device with a resolution of 100×100
above, the price is often more than 200 US dollars, which
limits the mass production of the sensor. Besides, the higher
the resolution, the larger its volume tends to be, which
also prevents the deployment of tactile sensors with limited
space inside. To achieve low cost and miniaturization, we
used MLX90640 as the temperature sensing unit, which can
achieve a resolution of 24×32 and a field of view of 155o.
In addition, to achieve higher-resolution temperature sensing,
we propose a temperature data calibration platform along
with lightweight super-resolution algorithms for mid-infrared
temperature images.

1) Temperature data acquisition platform: Super-resolution
algorithms can be categorized into two types: traditional
methods and deep learning methods [69], [70]. Traditional
methods can improve the resolution of the image without using
a referenced high-resolution image, but the accuracy is poor.
Deep learning methods require high-resolution reference data
but usually achieve better performance. We choose to apply
the deep learning method. To obtain high-resolution reference
images, we build a temperature data acquisition platform as
shown in Fig. 12(a)(b)(c), consisting of M3Tac, a holder, and a
high-resolution temperature sensor (InfiRay T2S+, resolution:
192×256). Since M3Tac utilizes an ultra-thin elastic film as the
sensing skin, the inner and outer surfaces of the sensing skin
almost have the same temperature. After contacting the sensor
surface with objects of different temperatures, we remove the
object and the temperature of the film will be maintained for
a short time. At this moment, we obtain paired temperature
images, one externally with the high-resolution temperature
sensor and one internally with the low-resolution sensor. We
collected a total of 800 groups of data and each group contains
one high-resolution image and one low-resolution image.

2) Super-resolution algorithms: To achieve higher-
resolution temperature sensing using low-resolution sensors,
we design a lightweight super-resolution algorithm for
thermal images, named PACmixSR (Progressive-ACmix Super
Resolution), as shown in Fig. 12(d). The algorithm employs
the ACmix [71] organically fusing convolutional neural
network and self-attention mechanism and progressively
realizes super-resolution. Temperature sensing is one of the
basic functions of M3Tac, based on which we can do a lot
of extended tasks, and a lightweight super-resolution network
can save more computational resources for subsequent tasks.
The overall model parameters only count 0.71 MB, achieving
a balance between lightweight and performance.

The self-attention mechanism is decomposed into the gen-
eration of query, keys, values, and feature aggregation phases.
Let F∈RCin×H×M,G∈RCout×H×M denote the input and output
features, and H, M represent the height and width of the image,
respectively. fi, j ∈RCin , gi, j ∈RCout represent the corresponding
tensors of pixel (i, j), the attention module computation can
be defined as:

q(n)
i, j = Wn

qfi, j, k(n)
i, j = W(n)

k fi, j, v(n)i, j = W(n)
v fi, j, (8)
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gs
i, j =

N∨
n=1

(
∑

(a,b)∈Nc(i, j)
A
(

q(n)
i, j ,k

(n)
a,b

)
v(n)a,b

)
, (9)

where
N∨

n=1
represents the concatenation of the outputs of

N self-attention heads, and gs
i, j is the self-attention part

of outputs. A(·, ·) represents the attention weight function.
W(n)

q ,W(n)
k ,W(n)

v are the weight matrices of query (q), keys
(k), and values (v). Let R represent kernel size, NR(i, j) is a
local region centered around (i, j) with margin width of R.

The convolutional layer can be similarly decomposed into
two phases for generating feature maps of the corresponding
pixels of the convolutional kernel and mixing them up by
using the Shift operator. However, the first phase occupies the
major amount of computation for both modules. Therefore,
the same first stage can be fused to simplify the computation.
The computation of the convolutional layer can be defined as:

p(n)
i, j =

∨(
q(n)

i, j ,k
(n)
i, j ,v

(n)
i, j

)
, (10)

KR2

i, j = FC

(
N∨

n=1

p(n)
i, j

)
, (11)

gc
i, j =

R−1

∑
y=0

R−1

∑
x=0

Shift
(

KR×y+x+1
i, j ,y−⌊R/2⌋,x−⌊R/2⌋

)
, (12)

Shift(fi, j,∆x,∆y) = fi−∆x, j−∆y, (13)

where p(n)
i, j is the concatenation of q(n)

i, j ,k
(n)
i, j ,v

(n)
i, j in channel

dimension, and FC(·) denotes kernel feature extractor com-
posed of fully connected neural network. The final output is
the combination of the features of self-attention layer gs

i, j and
convolutional layer gc

i, j with weights η1, η2:

gi, j = η1gs
i, j +η2gc

i, j. (14)

Comprising log2(t)− 1 ACmixResidualBlocks and an Up-
sample module, where t donates the scale factor, the overall
network architecture of PACmixSR makes a great process
in being lightweight. Additionally, by adopting a progressive
super-resolution strategy, it achieves more stable performance.
The combination of ACmixResidualBlock and the progres-
sive strategy enables PACmixSR to strike a balance between
lightweight design and performance efficiency.

E. Multimodal Classification (near-infrared + mid-infrared)

In a home or laboratory scenario, we often need to manipu-
late objects with different textures, shapes, and temperatures,
and sometimes the object’s excessively high temperature or
cold temperature can easily damage human skin. And for some
transparent containers in life, such as cups and bottles, it is
difficult to detect and classify them using only a camera [72].
The use of M3Tac not only allows us to obtain information
about the temperature of the object at the time of contact but
also allows us to realize the classification of objects during
the grasping process. To realize this function, we design
a multimodal classification network, where temperature and
texture images are concatenated together using GoogleNet
[73]. The architecture of this network is shown in Fig. 13.

Fig. 13. Multimodal classification network.

Fig. 14. Stickiness recognition network.

F. Stickiness Recognition (near-infrared)

In addition to temperature, stickiness is also a common
property of objects. Human beings [74] can also determine
the stickiness of an object by sensing the deformation of the
skin during the contact-separation process which [75] is one of
the ways to measure the stickiness of adhesive tapes. Inspired
by this process, we record the contact and separation process
of M3Tac with the object, which can realize the stickiness
classification of the object. We use VGGNet as a feature en-
coder and two-layer LSTM to capture temporal relationships.
The network framework is shown in Fig. 14. Considering the
limit of computing resources, TimeWrapper [76] is added to
balance the usage of GPU memory and inference time.

V. EXPERIMENTS

To test the performance of M3Tac, we conduct contact force
sensing experiments (Exp. 1), super-resolution temperature
sensing experiments (Exp. 2), 3D reconstruction experiments
(Exp. 3), stickiness classification experiments (Exp. 4), liq-
uid temperature classification experiments (Exp. 5), and the
proximity sensing experiment (Exp. 6), which verified that
the sensor has excellent performance in contact force sensing,
temperature sensing, deformation detection, multimodal classi-
fication and so on. In addition, to test the application potential
of the sensor in real scenarios, we also conducted fragile object
grasping experiments (Exp. 7), circuit board heating location
detection experiments (Exp. 8), underwater pipeline abnormal
hot spot detection experiments (Exp. 9). These experiments
illustrate the high application value of M3Tac.

A. Exp. 1: Contact Force Sensing

To test the precision of force perception, we employ an
automatic acquisition & annotation platform as shown in
Fig. 5, and collect data using six different sizes of probes
depicted in Fig. 15. We gathered a total of 48,000 data, with
8,000 data collected for each type of probe, and 80% of these
data are utilized as the training dataset. We use near-infrared
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TABLE III
COMPARISON OF FORCE PREDICTION ACCURACY

Method X-peak↓ Y-peak↓ Z-peak↓ Mean↓
X-map Y-map Z-map

1.05↑ 1.10↑ 1.25↑ 1.05↑ 1.10↑ 1.25↑ 1.05↑ 1.10↑ 1.25↑
ResNet-FCN [31] 0.031 0.039 0.300 0.123 0.245 0.424 0.685 0.187 0.342 0.609 0.297 0.484 0.741

FSwint-XYZ (Ours) 0.023 0.015 0.082 0.040 0.745 0.871 0.946 0.473 0.765 0.931 0.571 0.744 0.895
FSwint-MAP (Ours) 0.017 0.015 0.035 0.023 0.754 0.879 0.954 0.553 0.792 0.939 0.548 0.745 0.899

images as input and use the processed visible-light images
as the mask. The proposed FSwint-MAP network employs
a transformer-based U-shaped encoder-decoder architecture
and utilizes skip connections for local-global semantic feature
learning, which can effectively extract the force characteristics
within the images.

To validate the effectiveness of our network and output
scheme, we compare it with two classic schemes as base-
lines. One is the FSwint-XYZ, which utilizes the transformer
architecture, and the peak force map is no longer outputted.
Instead, it directly outputs the individual force values in the
X, Y, and Z directions, which are adopted by the latest force-
sensing algorithm framework [36]. Due to the lack of open-
source code, we reproduce and modify the network based on
the one they provided. The other baseline is to change the
Swin-Unet [68] structure to the ResNet-FCN structure.

In the experiments, we adopt the δτ metric for the outputted
force distribution map, a common measure in the field of depth
estimation, representing the percentage of pixels within the
error range of τ . The error range τ is defined as follows:

max
(

f/ f̂ , f̂/ f
)
< τ, (15)

where f and f̂ represent the force distribution map for
the ground truth and prediction, respectively. δτ denotes the
percentage of pixels within the error range τ . We set the
values of τ to 1.05, 1.10, and 1.25, respectively. According
to the results in Table III, it can be seen that ResNet-
FCN [31] has a significant gap compared to FSwint-XYZ
and our proposed FSwint-MAP. This is primarily because the
transformer architecture has an advantage over the ResNet
architecture [77] in dense prediction. FSwint-XYZ, having the
same main network structure as our FSwint-MAP scheme,
therefore achieves similar results in the evaluation of the force
distribution map as our proposed FSwint-MAP network. To
evaluate the performance of our network and FSwint-XYZ in
predicting peak force, we convert the peak force map into
forces in the X, Y, and Z directions. The conversion process
involves taking the average force within all mask areas and
calculating the average force prediction error in the test set.

As can be seen from Table III, FSwint-MAP performs better
compared to FSwint-XYZ. This is because we perform dense
force estimation in FSwint-MAP, ensuring that even if the pre-
diction is not good at certain points, the error will be averaged
out by other points, so FSwint-MAP converges more easily.
Besides, by predicting the peak force map, the force’s area of
effect and center can be more easily discerned. It also allows
for the prediction of multiple contact points, an aspect that is
lacking when predicting individual forces in the X, Y, and Z

Fig. 15. Different sizes of probes used for force testing.

directions. The performance of ResNet-FCN is relatively poor,
indicating that the transformer architecture has an advantage
over the ResNet architecture in dense prediction tasks.Besides,
we have open-sourced our code, data and training weights2 &
https://cloud.tsinghua.edu.cn/d/ with a detailed description of
the force capability.

B. Exp. 2: Temperature Sensing

To test the temperature detection accuracy of the sensors,
we build an experimental platform as shown in Fig. 16(a),
which contains the M3Tac sensor, the heating platform and
the thermocouple sensor. We adjusted the temperature of
the heating platform and compared the error between the
thermocouple sensor and M3Tac. Considering the temperature
range of the equipment, we take 40 detection points, as shown
in Fig. 16(b), and adopt Mean Absolute Error (MAE) as an
evaluation metric:

MAE =
1
m

m

∑
i=1

|yi − ŷi| , (16)

where yi, ỹi and m denote the true value, the predicted value
and the number of sample sets.

After testing, the temperature detection accuracy of M3Tac
can reach 0.3 oC. In the temperature range test, the sensor
can achieve temperature detection between -20 and 130 o, the
extreme temperature is 140 oC, and the temperature response
speed can reach 54 oC/s.

To test the performance of the proposed super-resolution
algorithm, we acquired 800 groups of data in the range of

2The supplementary material links are https://github.com/T-Da-
Vinci/M3Tac/tree/main/M3Tac

https://cloud.tsinghua.edu.cn/d/3c4b2de286ff47f2be08/
https://github.com/T-Da-Vinci/M$^3$Tac/tree/main/M$^3$Tac_Force
https://github.com/T-Da-Vinci/M$^3$Tac/tree/main/M$^3$Tac_Force
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Fig. 16. Temperature sensing accuracy test experiment. (a) Experimental platform; (b) Test results at different temperatures.

Fig. 17. Comparison of the results of different super-resolution models (LR:
low-resolution data; HR: high-resolution data).

0∼100 oC, and each group contains a high-resolution image
and a low-resolution image. To demonstrate the performance
of PACmixSR under the guarantee of model lightweight,
we compare it with the classical super-resolution models
LapSRN [78], IMDN [79], and BSRGAN [80]. All models
use the Adam optimizer with a learning rate of 0.004 and
MultiStepLR to adjust the learning rate, with a milestone set
every 5,000 steps. After cropping and aligning the thermal
sensor images, we obtain a low-resolution image size of
22×22 and a high-resolution image size of 176×176. Ta-
ble IV shows the quantitative comparisons, where PACmixSR
achieves the minimum model parameters count of 0.71 MB
and the highest inference speed of 445.77 frames per second
(FPS). In comparison with LapSRN, it achieves a better super-
resolution performance with a smaller memory occupation
while using a progressive super-resolution network structure.
Although BSRGAN achieves the highest peak signal-to-noise

TABLE IV
SUPER-RESOLUTION ALGORITHM PERFORMANCE COMPARISON

Method PSNR↑ SSIM↑ #Params↓ FPS↑
LapSRN [78] 30.82 0.9682 4.98M 416.16

PACmixSR (Ours) 31.50 0.9705 0.71M 445.77
IMDN [79] 32.13 0.9733 3.44M 337.58

BSRGAN [80] 36.90 0.9846 63.69M 32.84

Fig. 18. 3D reconstruction results for different objects. From left to right:
Bottle cap, flashlight, nut, cube, screwdriver, screw.

ratio (PSNR) of 36.90 and structural similarity index (SSIM)
of 0.9846, the model parameters count is nearly increased
to 90 times. Comparison with the lightweight model IMDN
reveals that our model parameters are reduced to 21% and the
FPS is improved by 32% at a negligible performance sacrifice.
Fig. 17 visualizes the results of the model testing. Besides, the
function of the camera in the mid-infrared band is to obtain the
temperature information on the surface of the sensing skin, the
mid-infrared light cannot transmit through the sensing skin, so
it is also not affected by the color of the object.

C. Exp. 3: 3D Reconstruction

To test the detection accuracy of the reconstruction algo-
rithm, we utilize a 14 mm diameter sphere for calibration.
After calibration, we captured 10 images and obtained the
MAE of 0.33 mm, the calculation equation is as follows:
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Fig. 19. Tapes used for stickiness testing. (a) Electrical insulating tape; (b)
Transparent plastic tape; (c) Nano double-sided tape; (d) Normal double-sided
tape; (e) Paper tape; (f) Paper.

MAE =
1

m×n

m

∑
i=1

n

∑
j=1

∣∣∣Seg(xi,y j)− Ŝeg(xi,y j)
∣∣∣ , (17)

where Seg(xi,y j), Ŝeg(xi,y j), Seg and m× n denote the true
value, the predicted value, the contact area and the number of
sample sets, and (xi,y j) ∈ Seg.

In addition, for the selection of fitting algorithms, we com-
pare the least squares and random forest algorithms. The least
squares method has a faster reconstruction speed compared to
the random forest algorithm.

We perform the reconstruction of objects with different
shapes, such as bottle caps, flashlights, nuts, glass cubes,
screwdrivers, screws, etc. When performing 3D reconstruction,
we first segment the contact area using a neural network and
later reconstruct the segmented area using the reconstruction
algorithm, so the final display is planar, and the results
obtained are shown in Fig. 18.

D. Exp. 4: Stickiness Recognition

To test the effectiveness of the stickiness classification
network, we chose five tapes with different stickiness as well
as a tabletop for testing, as shown in Fig. 19. We record video
data for classification by near-infrared camera when the sensor
contacts and separates from the tape. In our experiments, we
collected 100 sets of data for each type of tape and 600 arrays
in total. To test the detection effectiveness, we divided the
training and testing sets by 8:2. After 60 epochs of training,
the classification accuracy can reach 98%, which validates the
feasibility of M3Tac for object stickiness classification.

E. Exp. 5: Liquid Bottle Classification

Based on the multimodal sensing ability of M3Tac, we
can realize not only the texture classification of grasping
objects but also the temperature detection of objects. To test
the application potential of our proposed sensor for grasping
and classification, we design grasping experiments for liquid
bottles with different temperatures. The grasping platform is
shown in Fig. 20(a)(b)(c), a parallel gripper is designed for
the gripping experiment, which is mounted on a Franka arm.
One side of the gripper is equipped with an M3Tac sensor and
the other side is equipped with an ATI mini45 force sensor.

We choose five bottles with similar diameters and sizes
but different textures and fill them with water of different
temperatures, as shown in Fig. 20(d)(e). To better quantify
the temperature index, we classify the solution into three
categories: normal temperature (20∼30 oC ), cold temperature(
0 ∼ 20 oC ), and hot temperature (30∼100 oC ), 150 sets of
data are collected for each bottle in each temperature range,
and each group of data contain a near-infrared image and
a mid-infrared image, a total of 150×3×5 sets of data are
collected. As shown in Fig. 22, we adopt accuracy as the main
evaluation metric, the calculation equation is as follows:

Accuracy = ncorrect /ntotal , (18)

where ncorrect and ntotal denote the number of successfully
predicted samples and the total number of samples.

After 50 training rounds, the network achieves a classifica-
tion accuracy of 98%. These experimental results underscore
the sensor’s significant practical utility, particularly in the
realms of home service and chemical laboratories.

F. Exp. 6: Proximity Sensing

To test the contact force sensing performance of M3Tac, we
built an experimental platform as shown in Fig. 23(Left). The
platform consists of a distance sensor, a liftable platform, etc.
The distance sensor can obtain the true value of the object’s
distance from the sensor surface, and the liftable platform can
ensure the stability of the object during data collection. In the
experiment, we tested four kinds of objects with different sizes
and colors, and each kind of object collected 50 sets of data
in the range of 0∼12 cm, as shown in Fig. 23(Right)3. The
proximity algorithm was used to establish the fitting equation,
and the MAE between the true value and the predicted value
directly was calculated. Finally, we obtained the perception
accuracy of the four objects as 0.222, 0.255, 0.371, and 0.286
cm, and the perception accuracy is below 3.8 mm.

G. Exp. 7: Fragile and Light Objects Grasping

To verify the value of our proposed proximity perception
in practical applications, we conduct grasping experiments
on fragile and light objects, as shown in Fig. 24. In the
experiment, we used feathers and pencil lead as the grasping
objects. Feathers are light and soft, which makes grasping very
difficult. The pencil lead is brittle and thin, which makes it
very challenging to detect and grasp.

As shown in Fig. 20(a), to show the advantages of the
M3Tac in gripping fragile and light objects, a force sensor
ATI min45 is mounted on the other side of the parallel gripper,
which has a force resolution of 1/16 N. To better detect the
proximity information, we also installed an LED ring on the
other side, to ensure a stable brightness. During the gripping
of a feather and a pencil lead, M3Tac is able to detect the
imperceptible contact information despite the absence of any
valid signal from the ATI force sensor, which shows the
feasibility of the M3Tac to achieve stable gripping of fragile
and light objects.

3P: Predicted value, M: Measured value by distance sensors.
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Fig. 20. Liquid bottle classification experiment. (a) Grasping platform; (b) Experiment on cold object grasping and classification: (i) Texture and contour
information of the object; (ii) Temperature information; (iii) Recognition results; (c) Experiment on hot object grasping and classification; (d) Objects ready
to be grasped; (e) Temperature classification.

Fig. 21. The result of stickiness recognition experiment. (a) Confusion matrix;
(b) Loss curve; (c) Accuracy curve; (d) Recall curve.

Fig. 22. The result of liquid bottle classification experiment. (a) Confusion
matrix; (b) Loss curve; (c) Accuracy curve; (d) Recall curve.

H. Exp. 8: Circuit Board Heat Detection
M3Tac combines multi-spectral information, which can not

only obtain the temperature information of the contacting
object but also the contour and depth of the object. Using
this property, we can locate the heat generation position of
the circuit board through contact and reconstruct the shape
of the circuit board surface, as shown in Fig. 25. Compared
with the traditional infrared camera, M3Tac can detect the
installation problems of the components on the surface of the
circuit while acquiring the location of heat generation, and
finding the problems of the circuit more accurately. This fully
utilizes the advantages of M3Tac’s large detection area, high
deformation range, and wide temperature detection range. In
addition, the sensor can detect temperatures up to 130 oC,
which meets the need to detect the thermal distribution of
circuit boards.

I. Exp. 9: Underwater Pipeline Anomalous Hot Spot Detection
Thanks to the excellent leakproofness and anti-interference

capabilities, M3Tac can also be applied to underwater sce-
narios. To illustrate this, we design an underwater pipeline
heating position detection experiment, as shown in Fig. 26.
We put heat-generating electrodes inside the pipe to simulate
the heat-generating line and use the tactile tracing algorithm
to guide the movement of the robotic arm. When touching
the heat-generating position, M3Tac can detect the contour
of the pipeline while acquiring the location of anomalous
heat generation, which has important applications for realizing
underwater detection.

VI. CONCLUSION & DISCUSSION

In this paper, we combine multispectral imaging with unidi-
rectional perspective latex film to propose a multispectral mul-
tifunctional visuotactile sensor (M3Tac) that can realize force,
deformation, texture, proximity, temperature, and stickiness
sensing. Firstly, to obtain pixel-level force sensing information,
we build an automated pixel-level data acquisition & annota-
tion system and utilize finite element analysis and FSwint-
MAP network to estimate the contact force information of
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Fig. 23. The proximity sensing experiment. Left: proximity sensing test platform. Right: test results for different objects.

Fig. 24. Fragile and light objects grasping experiment. Left: (a) Pencil lead
grasping; (b) Pencil lead; (c) Proximity image (Red circle indicates contact
position); (d) Force detected by industrial force sensors. Right: (a) Feather
grasping; (b) Feather; (c) Proximity image (Red circle indicates contact
position); (d) Force detected by industrial force sensors.

Fig. 25. Circuit board heat position detection experiment. (a) Experimental
scenario; (b) The sensor makes contact with the circuit board; (c) Near-infrared
image; (d) Temperature and near-infrared fusion information; (e) Depth image.

Fig. 26. Underwater pipeline anomalous hot spot detection experiment.
(a) Experimental scenario; (b) Finding hot spots; (c) Pipeline information
obtained from the segmentation network; (d) Temperature information.

each pixel, which achieves an accuracy of 0.023 N. Secondly,
we propose a 3D reconstruction method based on luminance
information, which not only realizes depth reconstruction but
also information extraction from the contact area. Next, to
realize high-resolution temperature sensing, we propose a
lightweight super-resolution network, which can get 172×172
high-resolution temperature information, the sensing accuracy
can reach 0.3 oC, and the sensing range can be up to -
20∼130 oC. The temperature response speed can reach 54
oC/s. In addition, we also propose a multimodal classification
algorithm and a stickiness classification method. Finally, to
verify the application value of the sensors, we propose a
fragile object grasping experiment, a circuit board heating
position detection experiment, and an underwater pipeline
heating position detection experiment. These tests serve to
underscore the sensor’s real-world applicability across various
domains, including home service, industrial inspection, and
underwater operations.

M3Tac is the first sensor to simultaneously realize high-
resolution proximity, force, deformation, temperature, sticki-
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ness, and texture sensing. In some aspects, it can even surpass
the sensing ability of human skin, which is of great signifi-
cance in advancing the development of tactile sensors. M3Tac
adopts a multispectral imaging technique, which provides
new ideas for developing visuotactile sensors. On the other
hand, based on the M3Tac sensor, we propose a complete
algorithmic framework and data acquisition system, which not
only reduces the workload during sensor calibration but also
plays a role in promoting the industrialization of visuotactile
sensors. In the contact force sensing method, we explore
the finite element analysis of the elastic inflatable film when
contact occurs, which provides theoretical support for sensors
adopting elastic inflatable films. In addition, the elastic film
used in our sensing skin not only avoids the influence of
acrylic glass on mid-infrared temperature detection but also re-
alizes stickiness classification based on the contact-separation
process. However, the sensor also has some drawbacks, such
as pixel-level force sensing that needs to obtain the finite
element model of the contacting object, proximity sensing that
is related to the size of the object, and excessive sensor size.

REFERENCES

[1] G. Corniani and H. P. Saal, “Tactile innervation densities across the
whole body,” Journal of Neurophysiology, vol. 124, no. 4, pp. 1229–
1240, 2020.

[2] A. B. Vallbo, R. S. Johansson, et al., “Properties of cutaneous
mechanoreceptors in the human hand related to touch sensation,” Human
Neurobiology, vol. 3, no. 1, pp. 3–14, 1984.

[3] A. Handler and D. D. Ginty, “The mechanosensory neurons of touch and
their mechanisms of activation,” Nature Reviews Neuroscience, vol. 22,
no. 9, pp. 521–537, 2021.

[4] X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan, and Z. L. Wang,
“Recent progress in electronic skin,” Advanced Science, vol. 2, no. 10,
p. 1500169, 2015.

[5] W. Kim, W. D. Kim, J.-J. Kim, C.-H. Kim, and J. Kim, “UVtac:
Switchable UV marker-based tactile sensing finger for effective force
estimation and object localization,” IEEE Robotics and Automation
Letters, vol. 7, no. 3, pp. 6036–6043, 2022.

[6] W. Yuan, S. Dong, and E. H. Adelson, “GelSight: High-resolution robot
tactile sensors for estimating geometry and force,” Sensors, vol. 17,
no. 12, p. 2762, 2017.

[7] M. Lambeta, P.-W. Chou, S. Tian, B. Yang, B. Maloon, V. R. Most,
D. Stroud, R. Santos, A. Byagowi, G. Kammerer, et al., “DIGIT: A
novel design for a low-cost compact high-resolution tactile sensor with
application to in-hand manipulation,” IEEE Robotics and Automation
Letters, vol. 5, no. 3, pp. 3838–3845, 2020.

[8] K. Shimonomura, H. Nakashima, and K. Nozu, “Robotic grasp control
with high-resolution combined tactile and proximity sensing,” in IEEE
International Conference on Robotics and Automation (ICRA), pp. 138–
143, 2016.

[9] S. Cui, R. Wang, J. Hu, J. Wei, S. Wang, and Z. Lou, “In-hand object
localization using a novel high-resolution visuotactile sensor,” IEEE
Transactions on Industrial Electronics, vol. 69, no. 6, pp. 6015–6025,
2021.

[10] C. Wu, A. C. Wang, W. Ding, H. Guo, and Z. L. Wang, “Triboelectric
nanogenerator: a foundation of the energy for the new era,” Advanced
Energy Materials, vol. 9, no. 1, p. 1802906, 2019.

[11] X. Lin and M. Wiertlewski, “Sensing the frictional state of a robotic skin
via subtractive color mixing,” IEEE Robotics and Automation Letters,
vol. 4, no. 3, pp. 2386–2392, 2019.

[12] W. Yuan, Y. Mo, S. Wang, and E. H. Adelson, “Active clothing material
perception using tactile sensing and deep learning,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 4842–4849,
2018.

[13] D. L. Pavia, G. M. Lampman, G. S. Kriz, and J. A. Vyvyan, Introduction
to spectroscopy. USA: Cengage Learning, 2014.

[14] J. Zwinkels, “Light, electromagnetic spectrum,” Encyclopedia of Color
Science and Technology, vol. 8071, pp. 1–8, 2015.

[15] W. Khan, N. Zaki, and L. Ali, “Intelligent pneumonia identification
from chest X-rays: A systematic literature review,” IEEE Access, vol. 9,
pp. 51747–51771, 2021.

[16] P. Chanprakon, T. Sae-Oung, T. Treebupachatsakul, P. Hannanta-Anan,
and W. Piyawattanametha, “An ultra-violet sterilization robot for dis-
infection,” in 5th International Conference on Engineering, Applied
Sciences and Technology (ICEAST), pp. 1–4, 2019.

[17] A. Nowosielski, K. Małecki, P. Forczmański, A. Smoliński, and K. Krzy-
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