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ABSTRACT:

Tactile perception is essential for skilled robotic manipulation, yet current systems are limited
by low sensor resolution, incomplete modality integration, and insufficient interpretation of
complex tactile signals. Here we show the Superior Tactile Sensor (SuperTac), a biomimetic,
multimodal tactile sensor inspired by the multispectral vision of pigeons. SuperTac integrates
multispectral imaging (mid-infrared to ultraviolet) with triboelectric and inertial sensing into a
single 1-mm-thick light-field-modulated skin composed of conductive polymer, fluorescent,
reflective, and supporting layers. The sensor combines pressure-adaptive force sensing with high-
resolution (0.00545 mm?#/pixel) and high-precision measurements across force (0.06 N accuracy),
position (0.4 mm accuracy), temperature (0-90 °C range), proximity (<15 cm range), and vibration
(0-60 Hz range). It achieves over 94% accuracy in discriminating texture, material, sliding,
collision, and colour. To interpret this rich multimodal data, we developed DOVE, an 8.5B-
parameter tactile language model that enables sophisticated understanding of tactile stimuli. This
integrated sensing and interpretation framework could bring robotic touch perception closer to
human-like capabilities, with potential applications in manufacturing, healthcare, and service
robotics.

One-Sentence Summary:

A pigeon-eye-inspired multimodal high-resolution tactile sensor, combined with a tactile
language model, allows robots to achieve human-like tactile perception and understanding of their
environment.

INTRODUCTION

Touch is a fundamental sensory modality for robotic manipulation!, human-robot
interaction (HRI1)?, and extended reality (XR)® applications. As embodied intelligence
advances, the demand for sophisticated tactile sensing capabilities has grown exponentially.
High-resolution multimodal tactile sensors, capable of detecting fine object details while
capturing diverse physical information, have emerged as a critical focus in both academic
research and industrial development*®.

Electronic skin (e-skin) based tactile sensors initially demonstrated significant potential for
multimodal sensing due to their versatile functional materials®®. However, increasing
spatial resolution and sensing modalities in e-skin necessitates denser electrode arrays,
resulting in signal crosstalk and complex readout circuitry. In contrast, visuotactile sensing

has been proposed as an elegant alternative, offering sub-millimeter spatial resolution
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through optical imaging while naturally integrating with modern artificial intelligence
frameworks, including computer vision®, deep neural networks* and large language
models (LLMs)  Despite these advantages, extending visuotactile sensing to
incorporate multispectral and non-imaging modalities presents significant technical
challenges. While traditional visual systems can readily integrate non-visible light sensors,
this approach is hindered in visuotactile systems due to constraints imposed by the sensing
skin. Although recent advancements have demonstrated bimodal visuotactile sensors
capable of simultaneous temperature-force* and material-force’® sensing, most
implementations remain confined to the visible (VIS) spectrum (Supplementary Table 1
and 2). Consequently, the development of truly multimodal visuotactile sensors faces two
primary obstacles: limitations in sensing skin design and restricted imaging bandwidth.

Inspired by the remarkable multispectral vision of pigeons'*!* we introduce the Superior
Tactile Sensor (SuperTac) (Fig. la and 1b, and Supplementary Video 1 and 2), an
integrated multimodal high-resolution (0.00545 mm?/pixel) tactile sensor that combines
multispectral imaging (Fig. 1c), triboelectric sensing (Fig. 1d), and inertial measurement
(Fig. 1e). At the heart of SuperTac is a miniaturized sensing unit (Supplementary Note 1
and Supplementary Table 3) featuring light field modulation and multispectral imaging
capabilities. The sensor employs a transparency-adjustable multilayered sensing skin
composed of a poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS)®
conductive layer, an ultraviolet (UV) ink fluorescent layer, and a silver powder-coated
reflective layer. This design enables different functional modes across various spectra
through light field modulation. Additionally, an integrated inertial measurement unit (IMU)
provides complementary acceleration and posture data. SuperTac achieves comprehensive
sensing capabilities, including force, texture, deformation, temperature, sliding, material
properties, distance, vibrations, collision detection, and color recognition (Fig. 1f and
Supplementary Video 3). A unique feature of the sensor is its adjustable internal air
pressure, which allows for dynamic adaptation of the force-sensing range. Through deep
learning integration, SuperTac shows exceptional performance: a force measurement
accuracy of 0.06 N, position accuracy of 0.4 mm, temperature range of 0-90°C, proximity
detection, vibration sensing from 0-60 Hz, and over 94% accuracy in texture, material,

sliding, collision, and colour classification. To showcase its practical applications, we
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integrated SuperTac into a dexterous robotic hand and developed DOVE, a specialised
tactile language model. DOVE accurately interprets tactile information from manipulated
objects, indicating the sensor’s potential for advanced HRI and robotic manipulation tasks
(Fig. 1g). This integrated approach achieves unprecedented resolution and functionality

compared to existing solutions *791216-31 (Fig, 1h).

MAIN TEXT
Bio-inspired Design of the Multimodal Tactile Sensor

The vertebrate retina contains specialised photoreceptors - rods and cones - with cones
enabling colour vision. Unlike humans, pigeons possess an additional type of cone cell
sensitive to ultraviolet wavelengths®, along with specialised retinal molecules for non-
imaging perception, such as magnetic field detection®. This enhanced visual system
enables pigeons to process complex environmental information more comprehensively.
Drawing inspiration from these capabilities, SuperTac combines multispectral imaging
with triboelectric and inertial sensing to expand the perceptual capabilities of visuotactile
sensors. Based on this design, through a single touch, the sensor can obtain information
about an object’s shape, texture, colour, temperature, and material, as well as the force

during contact.

Structural Design and Sensing Mechanism

Visuotactile sensing, which utilises vision for tactile perception®, has become increasingly
valuable for robotic grasping®® and manipulation®, particularly given its compatibility with
the foundation model frameworks, such as the vision-language-action (VLA) model®’.
Traditional visuotactile sensors typically consist of sensing skin, imaging, and lighting
modules. In contrast, SuperTac introduces an innovative design that integrates
multispectral imaging, triboelectric signal acquisition, IMU signal acquisition, and lighting
modules into a unified multimodal sensing system, significantly enhancing both
functionality and integration. This integrated design enables comprehensive environmental
interaction through multiple sensing modalities (Fig. 2a). The system can simultaneously

detect force, texture, deformation, temperature, material properties, proximity, sliding,
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pose, vibration, and colour (Supplementary Table 1 and 2), providing a detailed
multisensory representation of physical interactions.

The sensor’s design combines multiple functional elements (Fig. 2b). The core innovative
part is an adaptive transparency sensing skin coupled with a multimodal sensing system
capable of precise spectral band detection, triboelectric signal acquisition, and IMU-based
motion sensing. To capture triboelectric signals, we developed a transparent conductive
layer based on PEDOT: PSS integrated into the sensing skin. The design also incorporates
an IMU for orientation and acceleration sensing. These components are compactly
integrated into a four-layer printed circuit board (PCB) implementation with a radius of 16
mm, housing the multispectral imaging, triboelectric, IMU signal acquisition, and lighting
modules (Supplementary Note 2 and Supplementary Fig. 1, 2, and 3).

Sensing skin: The selection and structure of sensing skin materials are optimized to
enhance SuperTac’s functionalities (Supplementary Note 3). The skin comprises four
layers: a conductive layer, a reflective layer, a fluorescent layer, and a supporting layer
(Fig. 2b and Supplementary Fig. 4), with a thickness of only 1 mm (Supplementary Fig. 5).
The conductive layer, fabricated by screen-printing transparent PEDOT: PSS ink on
thermoplastic polyurethane (TPU) thin film, generates triboelectric signals during object
contact. PEDOT: PSS provides excellent transparency and conductivity, while TPU offers
exceptional stretchability, transparency, and toughness (Supplementary Fig. 6). The
combination ensures both film transparency and stable triboelectric signal generation. The
electrode adopts a vortex line (PEDOT: PSS) design to provide a uniform signal. Based on
the triboelectric mechanism (Supplementary Note 4), the conductive layer generates
distinct electrical signals upon contact with objects of varying electronegativities, enabling
material type discrimination and proximity sensing (Supplementary Fig. 7).

The reflective layer operates similarly to a one-way mirror (Fig. 2c and Supplementary Fig.
8 and 9), of which the transparency is regulated by light intensity on either side: on the
bright side, reflected light dominates, rendering the film opaque; on the dark side,
transmitted light prevails, making the film transparent. This mechanism allows
independent imaging across different wavelengths by controlling the light intensity in
specific spectral bands.

The fluorescent layer employs UV light to control marker visibility. These markers, visible



168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

in the UV spectrum but invisible in the near-infrared (NIR) band, enable the sensor to
alternate between detection modes with and without markers (Supplementary Fig. 4). This
capability allows simultaneous deformation and slide detection without compromising
texture detection. When combined with the multispectral imaging system, it captures UV
markers and NIR texture information.

The supporting layer is the base substrate of the sensing skin, providing mechanical
integrity and structural stability for the entire multilayer assembly. Its main functions are
to maintain the overall shape and flexibility of the skin, ensure reliable integration and
alignment of the other functional layers (conductive, reflective, and fluorescent), and
protect the sensor from mechanical damage during repeated deformations. Additionally,
the supporting layer serves as a physical barrier, isolating the functional layers from
external contaminants and environmental factors, thereby enhancing the durability and
longevity of the sensor. Unlike traditional acrylic-based designs, we employ a silicone-
based inflatable support structure. This design offers several advantages: a larger
deformation range for detailed object contour representation, an adjustable force-sensing
range (0 to 7 N) through internal air pressure control (Supplementary Fig. 10), and
improved thermal response due to its thinner profile. Additionally, the silicone inflatable
film addresses the limitations of mid-infrared (MIR, 5.5 um to 14 pm wavelength)
temperature sensing, where traditional materials like acrylic and standard glass cannot
transmit wavelengths above 5 um. This eliminates the need for costly, special optical glass
while maintaining performance. However, the pneumatic support structure offers
advantages such as adjustable pressure sensing and enhanced deformation sensing but
poses challenges related to sealing, material aging, and repeatability. To address these
issues, we integrated a compact air supply system, replaced latex with durable silicone, and
utilized TPU film for improved wear resistance, achieving superior durability and
consistent performance over 80,000 tests.

Multimodal sensing system: The multimodal sensing system integrates four modules:
multispectral imaging, triboelectric signal acquisition, IMU signal acquisition, and lighting
modules (Fig. 2b). The miniaturized multispectral imaging module includes an MIR
camera, a CMOS camera with low-pass filtering, and a CMOS camera with bandpass

filtering. The system covers four spectral bands: UV (390 nm illumination, 450 nm
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fluorescence), VIS (400-700 nm), NIR (940 nm), and MIR (5.5-14 pm) (Supplementary
Fig. 11). To prevent cross-talk, tactile mode uses UV fluorescence detection, while visual
mode captures external visible light with the UV LED turned off. (Fig. 2d).

MIR Detection: For temperature measurement, we employ an MIR imaging camera
(MLX90640) with 24x32 resolution, capable of detecting wavelengths between 5.5 um
and 14 pm and measuring temperatures from -40 °C to 300 °C. This camera captures
thermal radiation emitted by objects, enabling precise temperature mapping.

NIR Detection: A CMOS unit paired with a 935-945 nm bandpass filter and lens provides
precise NIR signal detection, with filter selection determined by the LED light source
wavelength.

VIS and UV Detection: A CMOS unit with a 700 nm low-pass filter and lens covers an
imaging range from 350 nm to 1000 nm, encompassing UV, VIS, and NIR spectra. LED
lighting adjustment enables selective wavelength detection.

The lighting module is meticulously designed to support both reflective and fluorescent
layer functionalities. For fluorescent marker detection, 390 nm LEDs excite the fluorescent
layer, revealing marker information. The UV fluorescent markers enable modality
switching for deformation, sliding, and texture sensing, offering advantages in 3D
reconstruction and sliding detection without relying on strict light control. When
deactivated, the fluorescent layer becomes transparent, allowing external color observation
(Fig. 2c). For texture sensing, 940 nm LEDs generate a strong internal NIR light source,
rendering the thin film opaque and enhancing surface texture detection (Supplementary Fig.
12). This light source also works in conjunction with the NIR detection unit, providing
stable illumination for precise signal detection (Supplementary Note 5).

For triboelectric signal acquisition, we use an ADA4505 chip operating at a 1 kHz sampling
frequency (Supplementary Table 4). The IMU signal acquisition utilizes MPUG6050,
capturing three-dimensional orientation angles and acceleration data. This configuration
enables comprehensive multimodal sensing while maintaining system compactness and
integration, addressing the limitations of traditional visuotactile sensors.

SuperTac demonstrates comprehensive sensing capabilities across multiple spectral bands
and sensing modalities (Fig. 2d). In the UV band, fluorescent markers enable precise

tracking of sliding and deformation through marker size and displacement measurements
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(Supplementary Note 6, Supplementary Table 5, and Supplementary Fig. 13, 14, and 15).
The VIS spectrum provides object color information upon contact, while the NIR band
captures texture and contact force data. Mid-infrared imaging enables temperature
measurement, complemented by triboelectric signals for material identification (Fig. 2e)
and proximity sensing (Fig. 2f). Additionally, IMU-based collision and vibration detection
further enhance the system’s multimodal sensing capabilities.

Performance Characterization

To evaluate force and position sensing capabilities, we developed a testing platform
incorporating an ATl Gamma sensor as the ground truth for force measurements (Fig. 3a).
The evaluation utilized 48 probe (Supplementary Fig. 16) designs across three geometries
(U-shape, V-shape, and polygon), collecting approximately 1,800 datasets per probe (Fig.
3b). A force-sensing neural network (Fig. 3c) was developed based on a UNet
architecture®, with ResNet4839 as the encoder to extract features from RGB deformation
images captured by the sensor. A fully connected layer was added to output the resultant
force vector, while the UNet decoder generated a deformation mask. The mask was
multiplied by the resultant vector to produce a force distribution map. The network was
trained and evaluated using 86,440 sets of deformation data collected from 48 probe types
(Fig. 3d), with a uniform sampling method employed to ensure comprehensive coverage
of the sensor surface and accurately assess its force sensing performance. The dataset was
split into 70% for training and 30% for testing. Training was conducted on an NVIDIA
A6000 GPU wusing the L1 loss function and the AdamW optimizer, with a
CosineAnnealingLR learning rate scheduler. The network achieves a position detection
MSE accuracy of 0.056 mm and a 3D force detection MSE accuracy of 0.0004 N, with an
overall position detection precision of around 0.4 mm (Fig. 3e) and a force error
distribution of approximately 0.06 N (Fig. 3f), demonstrating robust performance across
all probe types and strong generalizability (Supplementary Fig. 17). In addition, we
conducted comparative experiments using UV and NIR modalities over 80,000 contact
events to evaluate force sensing accuracy. Results showed that NIR consistently
outperformed UV markers across all evaluation metrics, confirming its superior accuracy

and stability in force sensing tasks (Supplementary Fig. 18). For 3D reconstruction testing,



261  we not only optimized the distribution of markers in simulations but also evaluated the
262  reconstruction accuracy of different algorithms. Through testing, our proposed method
263  achieved an average root mean square error (RMSE) of 0.0892 and mean absolute error
264  (MAE) of 0.0375 (Supplementary Note 6). For surface characterization, a long short-term
265 memory (LSTM) algorithm (Supplementary Note 7 and Supplementary Fig. 19) processed
266 150 sets of sliding and non-sliding data, achieving 97% accuracy in sliding detection. Color
267  classification was evaluated across six different colors, achieving 100% accuracy. Texture
268  recognition was tested on six 3D-printed textures (Supplementary Fig. 20) and six common
269  textures (Supplementary Fig. 21), demonstrating 98% accuracy (Fig. 3g and 3j).
270  Additionally, the sensor exhibited robust capabilities in Braille sensing as well as the
271  perception of 0.07 mm-thick hair strands (Supplementary Fig. 22). To verify the accuracy
272  of Braille recognition, we collected 200 samples for each of the 26 Braille letters, achieving
273  a classification accuracy of 100%, which demonstrates the sensor's exceptional texture
274 sensing capabilities (Supplementary Fig. 23).

275  Temperature detection was validated across a range of 0 to 90°C, limited by the thermal
276  resistance of the TPU film (Supplementary Fig. 24 and 25, Supplementary Videos 4 and
277  5). After testing, the SuperTac can achieve a temperature sensing accuracy of 0.25 °C after
278  calibration and remains unaffected by ambient temperature variations within the 28-50 °C
279  range. UV-induced heating causes only a minimal surface temperature change of 0.2 °C,
280 ensuring negligible interference with MIR-based temperature measurements
281  (Supplementary Note 8 and Supplementary Fig. 26).

282  The triboelectric sensing capability of SuperTac was comprehensively evaluated under
283  diverse conditions, including 10 different materials, 7 contact surface geometries, 15
284  contact speeds, 3 contact angles, and 5 pressure levels (Supplementary Note 9 and
285  Supplementary Fig. 27, 28, and 29). Controlled experiments demonstrated robust
286  classification performance in all situations, achieving 97% accuracy for contact angles, 99%
287  accuracy for pressure levels, 96% accuracy for velocities, and 95% accuracy for contact
288  shapes, with an overall 95% accuracy across all conditions (Fig. 3k). A triboelectric signal
289  acquisition platform was developed (Supplementary Fig. 30) to facilitate detailed signal
290 analysis, and a 3.8-hour durability test revealed consistently stable signal output

291  (Supplementary Fig. 31). Furthermore, by employing advanced signal filtering techniques
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and neural network classification, the triboelectric signals enabled proximity sensing
within a range of 0-15 cm, depending on the material properties, underscoring the
versatility and reliability of SuperTac in diverse sensing applications.

Vibration detection capabilities were validated using a custom platform (Supplementary
Fig. 32), demonstrating accurate frequency recognition within the range of 0-60 Hz (Fig.
3i and Supplementary Fig. 33). For collision detection, we analyzed 150 sets of IMU
signals from collision and non-collision scenarios, achieving 94% classification accuracy

(Fig. 3l and Supplementary Fig. 34).

Integration and Applications

Robotic hand implementation: To demonstrate SuperTac’s capabilities, we integrated it into
two robotic platforms: a three-finger dexterous hand and a parallel gripper (Supplementary
Video 6 and Supplementary Fig. 35 and 36). The dexterous hand features 10 degrees of
freedom with servo motor actuation at each joint. SuperTac is mounted in the palm,
enabling comprehensive object property sensing during grasping operations. For the
parallel gripper configuration, SuperTac is installed on one side, facilitating stable object
manipulation through integrated visual detection, contact force sensing, slip detection, and
collision detection algorithms.

Multimodal tactile language model:To enable advanced tactile information processing, we
developed DOVE (Supplementary Note 10 and Supplementary Fig. 37), a multimodal
tactile language model built upon a pretrained LLM (Fig. 5d). DOVE fuses multimodal
tactile inputs and language to characterize object properties, reason over tactile differences
between object pairs, and infer an object’s type and function. Specifically, DOVE can
process triboelectric, temperature, color, and texture inputs to generate rich descriptions
such as “yellow, room temperature, with a textured, raised, metallic surface.” (Fig. 5d and
Supplementary Video 7) When it receives tactile feedback from two objects, DOVE
produces relational reasoning statements, e.g., “The two objects share similar colors,
temperatures, and textures, but differ in material, so they are different.” DOVE also
associates tactile impressions with semantic knowledge for reasoning, e.g., “PET is
commonly used for food containers. Its yellow color suggests visibility or citrus-related

items. This is likely a beverage bottle used for daily consumption.” To explore the impact
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of network structure on the perception capabilities of DOVE, we further investigated the
effects of the hidden dimensions and activation functions in the projection layer.
Experimental results demonstrated that changes in hidden dimensions had minimal impact
on performance, while using the GELU activation function significantly outperformed
ReLU, ensuring effective alignment and fusion of multimodal features (Supplementary
Note 11 and Supplementary Table 6).

Enhanced human-robot interaction: We further demonstrated the system’s HRI capabilities
across four experimental scenarios (Fig. 5e, Supplementary Note 12, 13, and 14,
Supplementary Table 7, Supplementary Videos 8, 9, 10, 11, and 12, and Supplementary
Fig. 38 and 39). In the first scenario, the system identifies and selects a metallic cup with
a smooth surface. In the second scenario, the system follows user instructions to locate a
cup with specific characteristics—Ilettering and a rough surface. GPT-40 orchestrates the
interaction by directing visual identification and physical interaction with each cup, while
DOVE processes the tactile feedback. In the third scenario, DOVE receives a reference
object via touch and retrieves another that matches a specified color by reasoning jointly
over texture and color cues. In the fourth scenario, DOVE infers cluttered tabletop objects’
functions as reusable, recyclable, or general waste based on tactile feedback and generates
natural-language justifications for each decision. The system continues evaluation until it
finds a matching object or determines that no suitable matches exist.

The integration of comprehensive tactile sensing, language-based interpretation, and visual
processing represents a significant advancement toward human-like robotic perception and
interaction. By enabling robots to process and respond to multimodal sensory information
in a manner akin to human perceptual capabilities, this approach paves the way for more

intuitive and effective human-robot collaboration.

CONCLUSIONS

Traditional e-skin-based tactile sensors continue to face significant challenges in resolution,
homogeneity, and stability. While visuotactile sensors offer promising solutions through
advanced imaging techniques, their multimodal sensing capabilities have been limited by
constraints in sensing skin design and imaging bandwidth. Our work addresses these

fundamental limitations through a light-field modulated sensing skin combined with
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multispectral imaging, enabling high-resolution multimodal sensing. The sensor achieves
remarkable performance metrics, including 98% texture detection accuracy, 0.06 N 3D
force detection accuracy in the NIR band, 97% sliding detection accuracy in the UV band,
and 100% color detection accuracy in the VIS band. By incorporating non-imaging
perception inspired by pigeon magnetic field sensing, we further extend the sensor’s
capabilities to material detection (95% accuracy), collision detection (94% accuracy), and
vibration detection (0-60 Hz range), all without compromising imaging quality or
introducing electrode crosstalk issues.

The interpretation of heterogeneous tactile information through foundation models
presents unique challenges. DOVE, our multimodal tactile language model, addresses
these challenges through a unified input representation approach, which enhances
scalability and adaptability across diverse sensor configurations. However, this approach
reveals important trade-offs. While transforming sequential data into images has proven
effective for certain tasks, it may not fully capture the temporal characteristics inherent in
tactile signals. Alternative approaches, such as time-series encoders, might better preserve
temporal features but reintroduce challenges related to embedding heterogeneity. Striking
the optimal balance between scalability and effectiveness remains a crucial area for future
research and practical implementation.

Several promising directions emerge for extending SuperTac’s capabilities.
Miniaturization of the sensor could enable fingertip installation, significantly advancing
robotic in-hand manipulation capabilities. Additionally, DOVE’s modality-agnostic
framework, which converts various input modalities into image representations, could be
adapted for different sensor configurations and applications. Future work will focus on
advancing low-power decoding chips and exploring highly integrated packaging solutions
to further reduce the sensor's size while addressing challenges in heat dissipation and
system stability, while also optimizing DOVE across diverse sensor designs and
application-specific datasets to enhance its versatility and robustness. These developments
aim to bridge the gap between robotic and human-like perception capabilities, paving the

way for more intuitive and effective HRI.
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METHODS

® Fabrication of the sensing skin

The sensing skin was fabricated using a multi-step process (Supplementary Fig. 40,
Supplementary Note 15, and Supplementary Table 8). First, transparent silicone was mixed
and poured into acrylic molds, which provided a smoother surface finish compared to 3D-
printed molds. After heating, the silicone is cured to form the supporting layer. For the
fluorescent layer, a scraping method was employed, using a steel mesh as a mask to spread
fluorescent ink over the surface. To prevent unevenness caused by ink buildup, an
additional layer of transparent silicone was applied using spin-coating. The reflective layer
was created by mixing silver powder with transparent silicone, which was then spin-coated
onto the fluorescent layer. For the conductive layer, conductive ink was screen-printed onto
a TPU surface and heated for 60 minutes to complete the layer. Finally, the conductive
layer was attached to the translucent layer, finalizing the sensing skin. While the integration
of fluorescent markers introduces additional complexity, the standardized design ensures
low cost (less than $1) and high durability. The outer sensing skin, made of TPU film
commonly used in automotive and smartphone protective applications, exhibits
exceptional wear and corrosion resistance. Fluorescent markers showed no photobleaching
after one week of continuous UV exposure, ensuring stability (Supplementary Fig. 41).
These features demonstrate a thoughtful balance between functional enhancements and

cost-effectiveness.

® Assembly and connection of SuperTac

The sensor was designed with a modular structure (Supplementary Note 16 and
Supplementary Fig. 42), divided into three sections: upper, middle, and lower. The upper
and lower sections were made of aluminum alloy for high heat resistance and mechanical
strength, while the middle section was constructed from transparent acrylic to ensure even
diffusion of LED light onto the sensing skin. Threaded joints were used to connect the
modules, allowing for easy disassembly. To address potential overheating during
prolonged full-load operation, the SuperTac system incorporates a detachable magnetic
cooling fan powered via contact-based pogo pins and aligned using N52-grade magnets,

enabling quick removal for maintenance and effectively reducing the stabilized
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temperature by 18.4 °C during extended high-load operation, as demonstrated through
time—temperature comparison experiments (Supplementary Note 17 and Supplementary
Fig. 43, 44, 45, and 46).

The SuperTac system adopts a USB 3.1 Gen1 protocol for data communication, facilitating
robust and high-speed transmission across all sensing and communication modules
(Supplementary Note 18 and Supplementary Fig. 47). To ensure stable operation, the
system is equipped with an optimized power architecture that supports all modules under
full-load conditions, with a maximum power consumption of 4.5 W (Supplementary Note
19 and Supplementary Fig. 48 and 49). These design choices enhance the practicality and
scalability of the SuperTac system in real-world applications. In addition, we have
designed a Ul interface that simultaneously displays signals including mid-infrared, near-
infrared, visible light & ultraviolet, triboelectric signals, posture information, and

acceleration data (Supplementary Fig. 50).

® Image classification network design and training

For image-based tactile inputs, a ResNet18 backbone was cascaded with a multi-layer
perceptron (MLP) to extract task-relevant features and perform classification. The model
processes batches of 128x128 visuotactile images, generating intermediate feature maps
through ResNet, which were further processed via max-pooling and passed through the
MLP classifier. The network was trained end-to-end for four tasks: color, texture,
temperature, and material classification. Triboelectric signals were filtered to remove high-
frequency components and visualized as curves, which were stored as images. The dataset
was split into 80% for training, 10% for validation, and 10% for testing. The model was
trained using the Adam optimizer with a learning rate of 1x10~* and a batch size of 128,

alongside a step scheduler that reduced the learning rate by 0.9 every 10 validation steps.

® Sequential signal classification network design and training

For sequential inputs (e.g., IMU data and visuotactile videos), an LSTM network was
employed as the backbone to process the temporal flow of information (Supplementary Fig.
19). Low-dimensional data, such as IMU readings, were processed using a two-layer MLP,

while spatial-structural data, such as videos, were processed using a pretrained ResNet18.
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The LSTM updated its hidden state sequentially and output task-oriented information,
which was passed through an MLP classifier for final prediction. For IMU data, the model
was trained end-to-end for collision detection, while for sliding detection, only the LSTM
and MLP classifiers were trained. The dataset was split into 80% for training, 10% for
validation, and 10% for testing. Training used the AdamW optimizer with a learning rate
of 1x102 and a batch size of 128, alongside a step-based learning rate scheduler. After
testing, the classification algorithms based on ResNet and LSTM have a single prediction
time within 6 ms, meeting the real-time requirements (Supplementary Note 20 and

Supplementary Table 9).

® [Effects of air pressure and object hardness on sensor perception

We investigated the impact of internal air pressure on the tactile sensing performance of
the sensor, focusing on its ability to perceive flexible objects and its accuracy in force
sensing, texture recognition, and sliding detection. During testing, five pressure levels (1.2
kPa, 3 kPa, 4 kPa, 6 kPa, and 7 kPa) were selected for force sensing experiments, while
three pressure levels (3 kPa, 5 kPa, and 7 kPa) were chosen for texture recognition and
sliding detection experiments. Experimental results demonstrated that variations in air
pressure had minimal impact on the accuracy of force sensing, texture recognition, and
sliding detection. Notably, texture recognition and sliding detection achieved 100%
accuracy across all pressure conditions. A slight decrease in force sensing accuracy was
observed at high pressure (7 kPa), but it remained within an acceptable range. Overall, the
system exhibited stable and reliable performance under varying pressure conditions
(Supplementary Note 21 and Supplementary Fig. 51 and 52).

Extensive testing of the SuperTac system was conducted on soft and liquid-containing
objects, including probes made of diverse materials (PLA, cloth, plastic, paper, PET,
silicone) and flexible or liquid-containing textures. While the softness of objects slightly
impacted force sensing accuracy, the performance significantly improved by
supplementing the dataset with 500 flexible object samples (Supplementary Note 22 and
Supplementary Fig. 53). The system achieved 100% accuracy in texture recognition and
sliding detection (Supplementary Fig. 54 and 55). Furthermore, the inflatable structure of
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SuperTac demonstrated superior texture and contour sensing capabilities compared to
GelSight Mini, highlighting its advantages in handling complex surfaces (Supplementary
Fig. 56). Additionally, simulation results using finite element analysis (FEA) revealed that
the system maintains reliable contour recognition for objects with elastic moduli above 1
MPa, providing theoretical guidance for practical applications (Supplementary Note 23 and
Supplementary Fig. 57).

® Tactile language model design and training

To enable comprehensive understanding and reasoning over multimodal tactile data and
language, a large tactile language model was trained on a processed dataset integrating
color, texture, temperature, and triboelectric data, augmented with synthetic tactile
language Q&A pairs (Supplementary Fig. 37 and 39). The training and testing data for the
SuperTac system were constructed using tactile data spanning 6 colors, 3 temperature
conditions, 10 material types, and 6 surface textures, with multimodal Q&A pairs generated
by GPT-4 and rule-based scripts to integrate tactile information with natural language
descriptions (Supplementary Note 24). The training involved three stages: encoder
pretraining, embedding alignment, and model fine-tuning. Pretrained CLIP models*® were
used to extract image features, with an MLP classifier attached for end-to-end classification.
After fine-tuning, the classifiers were removed, and a projection layer was added for
embedding alignment. Finally, the projection layer and language backbone (Vicuna*') were
fine-tuned using LoRA*2. The total parameters of the four CLIP encoders and language
backbone reached 8.6 billion. Training used the AdamW optimizer with a cosine annealing
schedule, achieving robust performance across all modalities (Supplementary Note 25 and
Supplementary Table 10, 11, and 12).

Supplementary Materials

Supplementary Notes 1 to 25
Supplementary Tables 1 to 13
Supplementary Figs. 1 to 57
Supplementary Videos 1 to 12
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676  DOVE in human-robot interaction. (b) Stable object grasping by combining external vision with
677  contact, slide, and collision sensing. (c) Fusion of material, texture, color, and temperature
678 information, combined with a tactile language model for tactile information understanding. (d) The
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" you by touching it? d
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wrimage —> ||
= After touch, | feel that
(] [color], [temperature],
) [texture], [material].
| NRimage  —> \ y
\_ DOVE tactile language model )
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‘g What does the cup feel like?

o Word embedding layer —> Word % ’ p
embeddings p

baTransformer Block “a

Reaching '
q 1
9 Material —_ —_ Material

CLIP embedding
Large language model
Vicuna
Coll > > Color
CO|_|0|::r % embedding
After touch, | feel that the object is
Temperature > p  Temperature in yellow color and it is at room
CLIP embedding temperature. The object has a
textured surface featured by a
uniform pattern of large, raised,
bumps or scales that cover the
Texture
T?;),(_t,u;e - —>  embedding entire surface. With triboelectric
signal, | think the object is made

of metal.

° ¥
¥ :lwant a metallic cup whose surface is smooth. : Can you help me clean up the table?

[l
L

| see there are four cups in the image. Two of
. them appear to be metallic, but | need to
y touch them and check the material and
surface smoothness to confirm. Let's inspect
them one by one.

Sure, I'll go through the
items, touch each one, and
infer what actions | should
take for them individually.

This object is made of rubber. This object is made of metal

This cup has a
rough surface and is

made of plastic. ®

This cup has a
smooth surface but

it is made of wood@

Based on the Tactile Language Model,
the last cup has a smooth surface and is
made of metal. This seems like the right
choice based on your request. I'm
bringing it to you.

This cup has a
smooth surface and

is made of metal. @

r

Rubber isn’t usually
recyclable, so it should go in
the general waste bin.

It is made of plastic and has a
smooth, curved surface. This
appears to be a plastic drink
bottle. Since it is recyclable, it
should be placed in the recycling
bin.

This object is made of
polyurethane foam and has a
slightly rough or bumpy
surface. | think it's a dish
sponge, so I'll place it back
neatly on the table.

with a flat, smooth surface. It
might be some kind of
container, and it still appears
useful. I'll simply place it back
on the table.

It's made of fabric, and it

might be clothes or a towel.
Since it could still be useful,
I'll place it back on the table.

I've finished checking and
arranging all the items. The
table is now clean and
organized!
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