
ABSTRACT: 44 

Tactile perception is essential for skilled robotic manipulation, yet current systems are limited 45 

by low sensor resolution, incomplete modality integration, and insufficient interpretation of 46 

complex tactile signals. Here we show the Superior Tactile Sensor (SuperTac), a biomimetic, 47 

multimodal tactile sensor inspired by the multispectral vision of pigeons. SuperTac integrates 48 

multispectral imaging (mid-infrared to ultraviolet) with triboelectric and inertial sensing into a 49 

single 1-mm-thick light-field-modulated skin composed of conductive polymer, fluorescent, 50 

reflective, and supporting layers. The sensor combines pressure-adaptive force sensing with high-51 

resolution (0.00545 mm²/pixel) and high-precision measurements across force (0.06 N accuracy), 52 

position (0.4 mm accuracy), temperature (0–90 °C range), proximity (<15 cm range), and vibration 53 

(0–60 Hz range). It achieves over 94% accuracy in discriminating texture, material, sliding, 54 

collision, and colour. To interpret this rich multimodal data, we developed DOVE, an 8.5B-55 

parameter tactile language model that enables sophisticated understanding of tactile stimuli. This 56 

integrated sensing and interpretation framework could bring robotic touch perception closer to 57 

human-like capabilities, with potential applications in manufacturing, healthcare, and service 58 

robotics. 59 

One-Sentence Summary:  60 

A pigeon-eye-inspired multimodal high-resolution tactile sensor, combined with a tactile 61 

language model, allows robots to achieve human-like tactile perception and understanding of their 62 

environment. 63 

INTRODUCTION 64 

Touch is a fundamental sensory modality for robotic manipulation1, human-robot 65 

interaction (HRI)2, and extended reality (XR)3 applications. As embodied intelligence 66 

advances, the demand for sophisticated tactile sensing capabilities has grown exponentially. 67 

High-resolution multimodal tactile sensors, capable of detecting fine object details while 68 

capturing diverse physical information, have emerged as a critical focus in both academic 69 

research and industrial development4,5. 70 

Electronic skin (e-skin) based tactile sensors initially demonstrated significant potential for 71 

multimodal sensing due to their versatile functional materials6-8. However, increasing 72 

spatial resolution and sensing modalities in e-skin necessitates denser electrode arrays, 73 

resulting in signal crosstalk and complex readout circuitry. In contrast, visuotactile sensing 74 

has been proposed as an elegant alternative, offering sub-millimeter spatial resolution 75 



through optical imaging while naturally integrating with modern artificial intelligence 76 

frameworks, including computer vision9, deep neural networks4, and large language 77 

models (LLMs)10,11. Despite these advantages, extending visuotactile sensing to 78 

incorporate multispectral and non-imaging modalities presents significant technical 79 

challenges. While traditional visual systems can readily integrate non-visible light sensors, 80 

this approach is hindered in visuotactile systems due to constraints imposed by the sensing 81 

skin. Although recent advancements have demonstrated bimodal visuotactile sensors 82 

capable of simultaneous temperature-force4 and material-force12 sensing, most 83 

implementations remain confined to the visible (VIS) spectrum (Supplementary Table 1 84 

and 2). Consequently, the development of truly multimodal visuotactile sensors faces two 85 

primary obstacles: limitations in sensing skin design and restricted imaging bandwidth. 86 

Inspired by the remarkable multispectral vision of pigeons13,14, we introduce the Superior 87 

Tactile Sensor (SuperTac) (Fig. 1a and 1b, and Supplementary Video 1 and 2), an 88 

integrated multimodal high-resolution (0.00545 mm2/pixel) tactile sensor that combines 89 

multispectral imaging (Fig. 1c), triboelectric sensing (Fig. 1d), and inertial measurement 90 

(Fig. 1e). At the heart of SuperTac is a miniaturized sensing unit (Supplementary Note 1 91 

and Supplementary Table 3) featuring light field modulation and multispectral imaging 92 

capabilities. The sensor employs a transparency-adjustable multilayered sensing skin 93 

composed of a poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS)15 94 

conductive layer, an ultraviolet (UV) ink fluorescent layer, and a silver powder-coated 95 

reflective layer. This design enables different functional modes across various spectra 96 

through light field modulation. Additionally, an integrated inertial measurement unit (IMU) 97 

provides complementary acceleration and posture data. SuperTac achieves comprehensive 98 

sensing capabilities, including force, texture, deformation, temperature, sliding, material 99 

properties, distance, vibrations, collision detection, and color recognition (Fig. 1f and 100 

Supplementary Video 3). A unique feature of the sensor is its adjustable internal air 101 

pressure, which allows for dynamic adaptation of the force-sensing range. Through deep 102 

learning integration, SuperTac shows exceptional performance: a force measurement 103 

accuracy of 0.06 N, position accuracy of 0.4 mm, temperature range of 0-90°C, proximity 104 

detection, vibration sensing from 0-60 Hz, and over 94% accuracy in texture, material, 105 

sliding, collision, and colour classification. To showcase its practical applications, we 106 



integrated SuperTac into a dexterous robotic hand and developed DOVE, a specialised 107 

tactile language model. DOVE accurately interprets tactile information from manipulated 108 

objects, indicating the sensor’s potential for advanced HRI and robotic manipulation tasks 109 

(Fig. 1g). This integrated approach achieves unprecedented resolution and functionality 110 

compared to existing solutions 4,7,9,12,16-31 (Fig. 1h). 111 

 112 

MAIN TEXT 113 

Bio-inspired Design of the Multimodal Tactile Sensor 114 

The vertebrate retina contains specialised photoreceptors - rods and cones - with cones 115 

enabling colour vision. Unlike humans, pigeons possess an additional type of cone cell 116 

sensitive to ultraviolet wavelengths32, along with specialised retinal molecules for non-117 

imaging perception, such as magnetic field detection33. This enhanced visual system 118 

enables pigeons to process complex environmental information more comprehensively. 119 

Drawing inspiration from these capabilities, SuperTac combines multispectral imaging 120 

with triboelectric and inertial sensing to expand the perceptual capabilities of visuotactile 121 

sensors. Based on this design, through a single touch, the sensor can obtain information 122 

about an object’s shape, texture, colour, temperature, and material, as well as the force 123 

during contact. 124 

 125 

Structural Design and Sensing Mechanism 126 

Visuotactile sensing, which utilises vision for tactile perception34, has become increasingly 127 

valuable for robotic grasping35 and manipulation36, particularly given its compatibility with 128 

the foundation model frameworks, such as the vision-language-action (VLA) model37. 129 

Traditional visuotactile sensors typically consist of sensing skin, imaging, and lighting 130 

modules. In contrast, SuperTac introduces an innovative design that integrates 131 

multispectral imaging, triboelectric signal acquisition, IMU signal acquisition, and lighting 132 

modules into a unified multimodal sensing system, significantly enhancing both 133 

functionality and integration. This integrated design enables comprehensive environmental 134 

interaction through multiple sensing modalities (Fig. 2a). The system can simultaneously 135 

detect force, texture, deformation, temperature, material properties, proximity, sliding, 136 



pose, vibration, and colour (Supplementary Table 1 and 2), providing a detailed 137 

multisensory representation of physical interactions. 138 

The sensor’s design combines multiple functional elements (Fig. 2b). The core innovative 139 

part is an adaptive transparency sensing skin coupled with a multimodal sensing system 140 

capable of precise spectral band detection, triboelectric signal acquisition, and IMU-based 141 

motion sensing. To capture triboelectric signals, we developed a transparent conductive 142 

layer based on PEDOT: PSS integrated into the sensing skin. The design also incorporates 143 

an IMU for orientation and acceleration sensing. These components are compactly 144 

integrated into a four-layer printed circuit board (PCB) implementation with a radius of 16 145 

mm, housing the multispectral imaging, triboelectric, IMU signal acquisition, and lighting 146 

modules (Supplementary Note 2 and Supplementary Fig. 1, 2, and 3). 147 

Sensing skin: The selection and structure of sensing skin materials are optimized to 148 

enhance SuperTac’s functionalities (Supplementary Note 3). The skin comprises four 149 

layers: a conductive layer, a reflective layer, a fluorescent layer, and a supporting layer 150 

(Fig. 2b and Supplementary Fig. 4), with a thickness of only 1 mm (Supplementary Fig. 5). 151 

The conductive layer, fabricated by screen-printing transparent PEDOT: PSS ink on 152 

thermoplastic polyurethane (TPU) thin film, generates triboelectric signals during object 153 

contact. PEDOT: PSS provides excellent transparency and conductivity, while TPU offers 154 

exceptional stretchability, transparency, and toughness (Supplementary Fig. 6). The 155 

combination ensures both film transparency and stable triboelectric signal generation. The 156 

electrode adopts a vortex line (PEDOT: PSS) design to provide a uniform signal. Based on 157 

the triboelectric mechanism (Supplementary Note 4), the conductive layer generates 158 

distinct electrical signals upon contact with objects of varying electronegativities, enabling 159 

material type discrimination and proximity sensing (Supplementary Fig. 7). 160 

The reflective layer operates similarly to a one-way mirror (Fig. 2c and Supplementary Fig. 161 

8 and 9), of which the transparency is regulated by light intensity on either side: on the 162 

bright side, reflected light dominates, rendering the film opaque; on the dark side, 163 

transmitted light prevails, making the film transparent. This mechanism allows 164 

independent imaging across different wavelengths by controlling the light intensity in 165 

specific spectral bands. 166 

The fluorescent layer employs UV light to control marker visibility. These markers, visible 167 



in the UV spectrum but invisible in the near-infrared (NIR) band, enable the sensor to 168 

alternate between detection modes with and without markers (Supplementary Fig. 4). This 169 

capability allows simultaneous deformation and slide detection without compromising 170 

texture detection. When combined with the multispectral imaging system, it captures UV 171 

markers and NIR texture information. 172 

The supporting layer is the base substrate of the sensing skin, providing mechanical 173 

integrity and structural stability for the entire multilayer assembly. Its main functions are 174 

to maintain the overall shape and flexibility of the skin, ensure reliable integration and 175 

alignment of the other functional layers (conductive, reflective, and fluorescent), and 176 

protect the sensor from mechanical damage during repeated deformations. Additionally, 177 

the supporting layer serves as a physical barrier, isolating the functional layers from 178 

external contaminants and environmental factors, thereby enhancing the durability and 179 

longevity of the sensor. Unlike traditional acrylic-based designs, we employ a silicone-180 

based inflatable support structure. This design offers several advantages: a larger 181 

deformation range for detailed object contour representation, an adjustable force-sensing 182 

range (0 to 7 N) through internal air pressure control (Supplementary Fig. 10), and 183 

improved thermal response due to its thinner profile. Additionally, the silicone inflatable 184 

film addresses the limitations of mid-infrared (MIR, 5.5 µm to 14 µm wavelength) 185 

temperature sensing, where traditional materials like acrylic and standard glass cannot 186 

transmit wavelengths above 5 µm. This eliminates the need for costly, special optical glass 187 

while maintaining performance. However, the pneumatic support structure offers 188 

advantages such as adjustable pressure sensing and enhanced deformation sensing but 189 

poses challenges related to sealing, material aging, and repeatability. To address these 190 

issues, we integrated a compact air supply system, replaced latex with durable silicone, and 191 

utilized TPU film for improved wear resistance, achieving superior durability and 192 

consistent performance over 80,000 tests. 193 

Multimodal sensing system: The multimodal sensing system integrates four modules: 194 

multispectral imaging, triboelectric signal acquisition, IMU signal acquisition, and lighting 195 

modules (Fig. 2b). The miniaturized multispectral imaging module includes an MIR 196 

camera, a CMOS camera with low-pass filtering, and a CMOS camera with bandpass 197 

filtering. The system covers four spectral bands: UV (390 nm illumination, 450 nm 198 



fluorescence), VIS (400–700 nm), NIR (940 nm), and MIR (5.5–14 µm) (Supplementary 199 

Fig. 11). To prevent cross-talk, tactile mode uses UV fluorescence detection, while visual 200 

mode captures external visible light with the UV LED turned off. (Fig. 2d).  201 

MIR Detection: For temperature measurement, we employ an MIR imaging camera 202 

(MLX90640) with 24×32 resolution, capable of detecting wavelengths between 5.5 µm 203 

and 14 µm and measuring temperatures from -40 °C to 300 °C. This camera captures 204 

thermal radiation emitted by objects, enabling precise temperature mapping. 205 

NIR Detection: A CMOS unit paired with a 935-945 nm bandpass filter and lens provides 206 

precise NIR signal detection, with filter selection determined by the LED light source 207 

wavelength. 208 

VIS and UV Detection: A CMOS unit with a 700 nm low-pass filter and lens covers an 209 

imaging range from 350 nm to 1000 nm, encompassing UV, VIS, and NIR spectra. LED 210 

lighting adjustment enables selective wavelength detection.  211 

The lighting module is meticulously designed to support both reflective and fluorescent 212 

layer functionalities. For fluorescent marker detection, 390 nm LEDs excite the fluorescent 213 

layer, revealing marker information. The UV fluorescent markers enable modality 214 

switching for deformation, sliding, and texture sensing, offering advantages in 3D 215 

reconstruction and sliding detection without relying on strict light control. When 216 

deactivated, the fluorescent layer becomes transparent, allowing external color observation 217 

(Fig. 2c). For texture sensing, 940 nm LEDs generate a strong internal NIR light source, 218 

rendering the thin film opaque and enhancing surface texture detection (Supplementary Fig. 219 

12). This light source also works in conjunction with the NIR detection unit, providing 220 

stable illumination for precise signal detection (Supplementary Note 5). 221 

For triboelectric signal acquisition, we use an ADA4505 chip operating at a 1 kHz sampling 222 

frequency (Supplementary Table 4). The IMU signal acquisition utilizes MPU6050, 223 

capturing three-dimensional orientation angles and acceleration data. This configuration 224 

enables comprehensive multimodal sensing while maintaining system compactness and 225 

integration, addressing the limitations of traditional visuotactile sensors. 226 

SuperTac demonstrates comprehensive sensing capabilities across multiple spectral bands 227 

and sensing modalities (Fig. 2d). In the UV band, fluorescent markers enable precise 228 

tracking of sliding and deformation through marker size and displacement measurements 229 



(Supplementary Note 6, Supplementary Table 5, and Supplementary Fig. 13, 14, and 15). 230 

The VIS spectrum provides object color information upon contact, while the NIR band 231 

captures texture and contact force data. Mid-infrared imaging enables temperature 232 

measurement, complemented by triboelectric signals for material identification (Fig. 2e) 233 

and proximity sensing (Fig. 2f). Additionally, IMU-based collision and vibration detection 234 

further enhance the system’s multimodal sensing capabilities. 235 

 236 

Performance Characterization 237 

To evaluate force and position sensing capabilities, we developed a testing platform 238 

incorporating an ATI Gamma sensor as the ground truth for force measurements (Fig. 3a). 239 

The evaluation utilized 48 probe (Supplementary Fig. 16) designs across three geometries 240 

(U-shape, V-shape, and polygon), collecting approximately 1,800 datasets per probe (Fig. 241 

3b). A force-sensing neural network (Fig. 3c) was developed based on a UNet 242 

architecture38, with ResNet4839 as the encoder to extract features from RGB deformation 243 

images captured by the sensor. A fully connected layer was added to output the resultant 244 

force vector, while the UNet decoder generated a deformation mask. The mask was 245 

multiplied by the resultant vector to produce a force distribution map. The network was 246 

trained and evaluated using 86,440 sets of deformation data collected from 48 probe types 247 

(Fig. 3d), with a uniform sampling method employed to ensure comprehensive coverage 248 

of the sensor surface and accurately assess its force sensing performance. The dataset was 249 

split into 70% for training and 30% for testing. Training was conducted on an NVIDIA 250 

A6000 GPU using the L1 loss function and the AdamW optimizer, with a 251 

CosineAnnealingLR learning rate scheduler. The network achieves a position detection 252 

MSE accuracy of 0.056 mm and a 3D force detection MSE accuracy of 0.0004 N, with an 253 

overall position detection precision of around 0.4 mm (Fig. 3e) and a force error 254 

distribution of approximately 0.06 N (Fig. 3f), demonstrating robust performance across 255 

all probe types and strong generalizability (Supplementary Fig. 17). In addition, we 256 

conducted comparative experiments using UV and NIR modalities over 80,000 contact 257 

events to evaluate force sensing accuracy. Results showed that NIR consistently 258 

outperformed UV markers across all evaluation metrics, confirming its superior accuracy 259 

and stability in force sensing tasks (Supplementary Fig. 18). For 3D reconstruction testing, 260 



we not only optimized the distribution of markers in simulations but also evaluated the 261 

reconstruction accuracy of different algorithms. Through testing, our proposed method 262 

achieved an average root mean square error (RMSE) of 0.0892 and mean absolute error 263 

(MAE) of 0.0375 (Supplementary Note 6). For surface characterization, a long short-term 264 

memory (LSTM) algorithm (Supplementary Note 7 and Supplementary Fig. 19) processed 265 

150 sets of sliding and non-sliding data, achieving 97% accuracy in sliding detection. Color 266 

classification was evaluated across six different colors, achieving 100% accuracy. Texture 267 

recognition was tested on six 3D-printed textures (Supplementary Fig. 20) and six common 268 

textures (Supplementary Fig. 21), demonstrating 98% accuracy (Fig. 3g and 3j). 269 

Additionally, the sensor exhibited robust capabilities in Braille sensing as well as the 270 

perception of 0.07 mm-thick hair strands (Supplementary Fig. 22). To verify the accuracy 271 

of Braille recognition, we collected 200 samples for each of the 26 Braille letters, achieving 272 

a classification accuracy of 100%, which demonstrates the sensor's exceptional texture 273 

sensing capabilities (Supplementary Fig. 23).  274 

Temperature detection was validated across a range of 0 to 90°C, limited by the thermal 275 

resistance of the TPU film (Supplementary Fig. 24 and 25, Supplementary Videos 4 and 276 

5). After testing, the SuperTac can achieve a temperature sensing accuracy of 0.25 °C after 277 

calibration and remains unaffected by ambient temperature variations within the 28-50 °C 278 

range. UV-induced heating causes only a minimal surface temperature change of 0.2 °C, 279 

ensuring negligible interference with MIR-based temperature measurements 280 

(Supplementary Note 8 and Supplementary Fig. 26). 281 

The triboelectric sensing capability of SuperTac was comprehensively evaluated under 282 

diverse conditions, including 10 different materials, 7 contact surface geometries, 15 283 

contact speeds, 3 contact angles, and 5 pressure levels (Supplementary Note 9 and 284 

Supplementary Fig. 27, 28, and 29). Controlled experiments demonstrated robust 285 

classification performance in all situations, achieving 97% accuracy for contact angles, 99% 286 

accuracy for pressure levels, 96% accuracy for velocities, and 95% accuracy for contact 287 

shapes, with an overall 95% accuracy across all conditions (Fig. 3k). A triboelectric signal 288 

acquisition platform was developed (Supplementary Fig. 30) to facilitate detailed signal 289 

analysis, and a 3.8-hour durability test revealed consistently stable signal output 290 

(Supplementary Fig. 31). Furthermore, by employing advanced signal filtering techniques 291 



and neural network classification, the triboelectric signals enabled proximity sensing 292 

within a range of 0-15 cm, depending on the material properties, underscoring the 293 

versatility and reliability of SuperTac in diverse sensing applications. 294 

Vibration detection capabilities were validated using a custom platform (Supplementary 295 

Fig. 32), demonstrating accurate frequency recognition within the range of 0-60 Hz (Fig. 296 

3i and Supplementary Fig. 33). For collision detection, we analyzed 150 sets of IMU 297 

signals from collision and non-collision scenarios, achieving 94% classification accuracy 298 

(Fig. 3l and Supplementary Fig. 34). 299 

 300 

Integration and Applications 301 

Robotic hand implementation:To demonstrate SuperTac’s capabilities, we integrated it into 302 

two robotic platforms: a three-finger dexterous hand and a parallel gripper (Supplementary 303 

Video 6 and Supplementary Fig. 35 and 36). The dexterous hand features 10 degrees of 304 

freedom with servo motor actuation at each joint. SuperTac is mounted in the palm, 305 

enabling comprehensive object property sensing during grasping operations. For the 306 

parallel gripper configuration, SuperTac is installed on one side, facilitating stable object 307 

manipulation through integrated visual detection, contact force sensing, slip detection, and 308 

collision detection algorithms. 309 

Multimodal tactile language model:To enable advanced tactile information processing, we 310 

developed DOVE (Supplementary Note 10 and Supplementary Fig. 37), a multimodal 311 

tactile language model built upon a pretrained LLM (Fig. 5d). DOVE fuses multimodal 312 

tactile inputs and language to characterize object properties, reason over tactile differences 313 

between object pairs, and infer an object’s type and function. Specifically, DOVE can 314 

process triboelectric, temperature, color, and texture inputs to generate rich descriptions 315 

such as “yellow, room temperature, with a textured, raised, metallic surface.” (Fig. 5d and 316 

Supplementary Video 7) When it receives tactile feedback from two objects, DOVE 317 

produces relational reasoning statements, e.g., “The two objects share similar colors, 318 

temperatures, and textures, but differ in material, so they are different.” DOVE also 319 

associates tactile impressions with semantic knowledge for reasoning, e.g., “PET is 320 

commonly used for food containers. Its yellow color suggests visibility or citrus-related 321 

items. This is likely a beverage bottle used for daily consumption.” To explore the impact 322 



of network structure on the perception capabilities of DOVE, we further investigated the 323 

effects of the hidden dimensions and activation functions in the projection layer. 324 

Experimental results demonstrated that changes in hidden dimensions had minimal impact 325 

on performance, while using the GELU activation function significantly outperformed 326 

ReLU, ensuring effective alignment and fusion of multimodal features (Supplementary 327 

Note 11 and Supplementary Table 6). 328 

Enhanced human-robot interaction: We further demonstrated the system’s HRI capabilities 329 

across four experimental scenarios (Fig. 5e, Supplementary Note 12, 13, and 14, 330 

Supplementary Table 7, Supplementary Videos 8, 9, 10, 11, and 12, and Supplementary 331 

Fig. 38 and 39). In the first scenario, the system identifies and selects a metallic cup with 332 

a smooth surface. In the second scenario, the system follows user instructions to locate a 333 

cup with specific characteristics—lettering and a rough surface. GPT-4o orchestrates the 334 

interaction by directing visual identification and physical interaction with each cup, while 335 

DOVE processes the tactile feedback. In the third scenario, DOVE receives a reference 336 

object via touch and retrieves another that matches a specified color by reasoning jointly 337 

over texture and color cues. In the fourth scenario, DOVE infers cluttered tabletop objects’ 338 

functions as reusable, recyclable, or general waste based on tactile feedback and generates 339 

natural-language justifications for each decision. The system continues evaluation until it 340 

finds a matching object or determines that no suitable matches exist. 341 

The integration of comprehensive tactile sensing, language-based interpretation, and visual 342 

processing represents a significant advancement toward human-like robotic perception and 343 

interaction. By enabling robots to process and respond to multimodal sensory information 344 

in a manner akin to human perceptual capabilities, this approach paves the way for more 345 

intuitive and effective human-robot collaboration. 346 

 347 

CONCLUSIONS 348 

Traditional e-skin-based tactile sensors continue to face significant challenges in resolution, 349 

homogeneity, and stability. While visuotactile sensors offer promising solutions through 350 

advanced imaging techniques, their multimodal sensing capabilities have been limited by 351 

constraints in sensing skin design and imaging bandwidth. Our work addresses these 352 

fundamental limitations through a light-field modulated sensing skin combined with 353 



multispectral imaging, enabling high-resolution multimodal sensing. The sensor achieves 354 

remarkable performance metrics, including 98% texture detection accuracy, 0.06 N 3D 355 

force detection accuracy in the NIR band, 97% sliding detection accuracy in the UV band, 356 

and 100% color detection accuracy in the VIS band. By incorporating non-imaging 357 

perception inspired by pigeon magnetic field sensing, we further extend the sensor’s 358 

capabilities to material detection (95% accuracy), collision detection (94% accuracy), and 359 

vibration detection (0-60 Hz range), all without compromising imaging quality or 360 

introducing electrode crosstalk issues. 361 

The interpretation of heterogeneous tactile information through foundation models 362 

presents unique challenges. DOVE, our multimodal tactile language model, addresses 363 

these challenges through a unified input representation approach, which enhances 364 

scalability and adaptability across diverse sensor configurations. However, this approach 365 

reveals important trade-offs. While transforming sequential data into images has proven 366 

effective for certain tasks, it may not fully capture the temporal characteristics inherent in 367 

tactile signals. Alternative approaches, such as time-series encoders, might better preserve 368 

temporal features but reintroduce challenges related to embedding heterogeneity. Striking 369 

the optimal balance between scalability and effectiveness remains a crucial area for future 370 

research and practical implementation. 371 

Several promising directions emerge for extending SuperTac’s capabilities. 372 

Miniaturization of the sensor could enable fingertip installation, significantly advancing 373 

robotic in-hand manipulation capabilities. Additionally, DOVE’s modality-agnostic 374 

framework, which converts various input modalities into image representations, could be 375 

adapted for different sensor configurations and applications. Future work will focus on 376 

advancing low-power decoding chips and exploring highly integrated packaging solutions 377 

to further reduce the sensor's size while addressing challenges in heat dissipation and 378 

system stability, while also optimizing DOVE across diverse sensor designs and 379 

application-specific datasets to enhance its versatility and robustness. These developments 380 

aim to bridge the gap between robotic and human-like perception capabilities, paving the 381 

way for more intuitive and effective HRI. 382 

 383 



METHODS 384 

 Fabrication of the sensing skin 385 

The sensing skin was fabricated using a multi-step process (Supplementary Fig. 40, 386 

Supplementary Note 15, and Supplementary Table 8). First, transparent silicone was mixed 387 

and poured into acrylic molds, which provided a smoother surface finish compared to 3D-388 

printed molds. After heating, the silicone is cured to form the supporting layer. For the 389 

fluorescent layer, a scraping method was employed, using a steel mesh as a mask to spread 390 

fluorescent ink over the surface. To prevent unevenness caused by ink buildup, an 391 

additional layer of transparent silicone was applied using spin-coating. The reflective layer 392 

was created by mixing silver powder with transparent silicone, which was then spin-coated 393 

onto the fluorescent layer. For the conductive layer, conductive ink was screen-printed onto 394 

a TPU surface and heated for 60 minutes to complete the layer. Finally, the conductive 395 

layer was attached to the translucent layer, finalizing the sensing skin. While the integration 396 

of fluorescent markers introduces additional complexity, the standardized design ensures 397 

low cost (less than $1) and high durability. The outer sensing skin, made of TPU film 398 

commonly used in automotive and smartphone protective applications, exhibits 399 

exceptional wear and corrosion resistance. Fluorescent markers showed no photobleaching 400 

after one week of continuous UV exposure, ensuring stability (Supplementary Fig. 41). 401 

These features demonstrate a thoughtful balance between functional enhancements and 402 

cost-effectiveness.  403 

 404 

 Assembly and connection of SuperTac 405 

The sensor was designed with a modular structure (Supplementary Note 16 and 406 

Supplementary Fig. 42), divided into three sections: upper, middle, and lower. The upper 407 

and lower sections were made of aluminum alloy for high heat resistance and mechanical 408 

strength, while the middle section was constructed from transparent acrylic to ensure even 409 

diffusion of LED light onto the sensing skin. Threaded joints were used to connect the 410 

modules, allowing for easy disassembly. To address potential overheating during 411 

prolonged full-load operation, the SuperTac system incorporates a detachable magnetic 412 

cooling fan powered via contact-based pogo pins and aligned using N52-grade magnets, 413 

enabling quick removal for maintenance and effectively reducing the stabilized 414 



temperature by 18.4 °C during extended high-load operation, as demonstrated through 415 

time–temperature comparison experiments (Supplementary Note 17 and Supplementary 416 

Fig. 43, 44, 45, and 46). 417 

The SuperTac system adopts a USB 3.1 Gen1 protocol for data communication, facilitating 418 

robust and high-speed transmission across all sensing and communication modules 419 

(Supplementary Note 18 and Supplementary Fig. 47). To ensure stable operation, the 420 

system is equipped with an optimized power architecture that supports all modules under 421 

full-load conditions, with a maximum power consumption of 4.5 W (Supplementary Note 422 

19 and Supplementary Fig. 48 and 49). These design choices enhance the practicality and 423 

scalability of the SuperTac system in real-world applications. In addition, we have 424 

designed a UI interface that simultaneously displays signals including mid-infrared, near-425 

infrared, visible light & ultraviolet, triboelectric signals, posture information, and 426 

acceleration data (Supplementary Fig. 50).  427 

 428 

 Image classification network design and training 429 

For image-based tactile inputs, a ResNet18 backbone was cascaded with a multi-layer 430 

perceptron (MLP) to extract task-relevant features and perform classification. The model 431 

processes batches of 128×128 visuotactile images, generating intermediate feature maps 432 

through ResNet, which were further processed via max-pooling and passed through the 433 

MLP classifier. The network was trained end-to-end for four tasks: color, texture, 434 

temperature, and material classification. Triboelectric signals were filtered to remove high-435 

frequency components and visualized as curves, which were stored as images. The dataset 436 

was split into 80% for training, 10% for validation, and 10% for testing. The model was 437 

trained using the Adam optimizer with a learning rate of 1×10−4 and a batch size of 128, 438 

alongside a step scheduler that reduced the learning rate by 0.9 every 10 validation steps.  439 

 440 

 Sequential signal classification network design and training 441 

For sequential inputs (e.g., IMU data and visuotactile videos), an LSTM network was 442 

employed as the backbone to process the temporal flow of information (Supplementary Fig. 443 

19). Low-dimensional data, such as IMU readings, were processed using a two-layer MLP, 444 

while spatial-structural data, such as videos, were processed using a pretrained ResNet18. 445 



The LSTM updated its hidden state sequentially and output task-oriented information, 446 

which was passed through an MLP classifier for final prediction. For IMU data, the model 447 

was trained end-to-end for collision detection, while for sliding detection, only the LSTM 448 

and MLP classifiers were trained. The dataset was split into 80% for training, 10% for 449 

validation, and 10% for testing. Training used the AdamW optimizer with a learning rate 450 

of 1×10-3 and a batch size of 128, alongside a step-based learning rate scheduler. After 451 

testing, the classification algorithms based on ResNet and LSTM have a single prediction 452 

time within 6 ms, meeting the real-time requirements (Supplementary Note 20 and 453 

Supplementary Table 9). 454 

 455 

 456 

 Effects of air pressure and object hardness on sensor perception 457 

We investigated the impact of internal air pressure on the tactile sensing performance of 458 

the sensor, focusing on its ability to perceive flexible objects and its accuracy in force 459 

sensing, texture recognition, and sliding detection. During testing, five pressure levels (1.2 460 

kPa, 3 kPa, 4 kPa, 6 kPa, and 7 kPa) were selected for force sensing experiments, while 461 

three pressure levels (3 kPa, 5 kPa, and 7 kPa) were chosen for texture recognition and 462 

sliding detection experiments. Experimental results demonstrated that variations in air 463 

pressure had minimal impact on the accuracy of force sensing, texture recognition, and 464 

sliding detection. Notably, texture recognition and sliding detection achieved 100% 465 

accuracy across all pressure conditions. A slight decrease in force sensing accuracy was 466 

observed at high pressure (7 kPa), but it remained within an acceptable range. Overall, the 467 

system exhibited stable and reliable performance under varying pressure conditions 468 

(Supplementary Note 21 and Supplementary Fig. 51 and 52). 469 

Extensive testing of the SuperTac system was conducted on soft and liquid-containing 470 

objects, including probes made of diverse materials (PLA, cloth, plastic, paper, PET, 471 

silicone) and flexible or liquid-containing textures. While the softness of objects slightly 472 

impacted force sensing accuracy, the performance significantly improved by 473 

supplementing the dataset with 500 flexible object samples (Supplementary Note 22 and 474 

Supplementary Fig. 53). The system achieved 100% accuracy in texture recognition and 475 

sliding detection (Supplementary Fig. 54 and 55). Furthermore, the inflatable structure of 476 



SuperTac demonstrated superior texture and contour sensing capabilities compared to 477 

GelSight Mini, highlighting its advantages in handling complex surfaces (Supplementary 478 

Fig. 56). Additionally, simulation results using finite element analysis (FEA) revealed that 479 

the system maintains reliable contour recognition for objects with elastic moduli above 1 480 

MPa, providing theoretical guidance for practical applications (Supplementary Note 23 and 481 

Supplementary Fig. 57). 482 

 483 

 Tactile language model design and training 484 

To enable comprehensive understanding and reasoning over multimodal tactile data and 485 

language, a large tactile language model was trained on a processed dataset integrating 486 

color, texture, temperature, and triboelectric data, augmented with synthetic tactile 487 

language Q&A pairs (Supplementary Fig. 37 and 39). The training and testing data for the 488 

SuperTac system were constructed using tactile data spanning 6 colors, 3 temperature 489 

conditions, 10 material types, and 6 surface textures, with multimodal Q&A pairs generated 490 

by GPT-4 and rule-based scripts to integrate tactile information with natural language 491 

descriptions (Supplementary Note 24). The training involved three stages: encoder 492 

pretraining, embedding alignment, and model fine-tuning. Pretrained CLIP models40 were 493 

used to extract image features, with an MLP classifier attached for end-to-end classification. 494 

After fine-tuning, the classifiers were removed, and a projection layer was added for 495 

embedding alignment. Finally, the projection layer and language backbone (Vicuna41) were 496 

fine-tuned using LoRA42. The total parameters of the four CLIP encoders and language 497 

backbone reached 8.6 billion. Training used the AdamW optimizer with a cosine annealing 498 

schedule, achieving robust performance across all modalities (Supplementary Note 25 and 499 

Supplementary Table 10, 11, and 12).  500 
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Figures: 640 

 641 

Fig. 1. Overview of the multimodal tactile sensing system. (a) The structure of the retina in 642 
pigeons includes cones and rods. We draw inspiration from the remarkable multispectral vision 643 
along with specialized retinal molecules for non-imaging perception, such as magnetic field 644 
detection. (b) The overall structure of the sensor comprises a sensing skin and a multimodal sensing 645 
system. (c) Multispectral imaging systems achieve visible (VIS), ultraviolet (UV), near-infrared 646 
(NIR), and mid-infrared (MIR) spectral sensing. (d) Triboelectric sensor and (e) inertial 647 
measurement unit (IMU) to enhance the sensing capability of the tactile sensor. (f) SuperTac’s 648 
demonstration of sensing modalities and functions. Deploying sensors with a manipulator can 649 
enable the sensing of ten functions. (g) SuperTac combined with the tactile language model (DOVE) 650 
can be applied in object recognition, grasping, and HRI. (h) Comparison of current mainstream 651 
tactile sensors regarding resolution and functionality. 652 



 653 

Fig.2. Structural Design and Sensing Mechanism. (a) Sensing modalities of SuperTac. (b) The 654 
structure of sensing skin, imaging module, and lighting module. (c) SuperTac is in touch mode 655 
when the internal lighting module is turned on, while it is in vision mode when the internal lighting 656 
module is turned off. (d) The tactile data is captured when the sensor is in contact with the object. 657 
In column-first order: the UV image in touch mode; the NIR image in touch mode; the RGB image 658 
in vision mode; and the temperature data. (e) Triboelectric signal acquisition mechanism. (f) Object 659 
proximity sensing (Each data point's error bar is based on n=5 independent experimental 660 

repetitions, and the error bar represents the maximum and minimum values of the error).  661 
 662 
 663 
 664 



 665 

Fig.3 Perception and classification algorithm design. (a) Force sensing data acquisition 666 
platform. (b) We test the force sensing accuracy of 48 probes in U-shape, V-shape, and polygonal 667 
shapes. (c) Force sensing network. (d) In the experiment, we collected 86,440 data sets for contact 668 
force distribution. (e) Contact position detection accuracy. (f) Force sensing accuracy. (g) Textures 669 
of 12 different surfaces. (h) Triboelectric signal of 10 different materials. (i) Vibration signals at 670 
different frequencies are detected by the SuperTac. (j) Texture classification confusion matrix. (k) 671 
Material classification confusion matrix. (l) Collision detection confusion matrix. 672 
 673 



 674 

Fig.4 Design and application of tactile language model. (a) The integration of SuperTac with 675 
DOVE in human-robot interaction. (b) Stable object grasping by combining external vision with 676 
contact, slide, and collision sensing. (c) Fusion of material, texture, color, and temperature 677 
information, combined with a tactile language model for tactile information understanding. (d) The 678 
tactile language model we designed and its application to tactile information understanding. (e) 679 
Experiments in human-robot interaction utilizing tactile language model. The tactile language 680 
model assists robots in decision-making by providing detailed analyses and reasoning of tactile 681 
data. 682 
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