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Abstract—In our previous work, we proposed the extended 
PID (EPID) controller, which is a state-space extension of 
traditional PID control. Compared to PID control, EPID is more 
suitable for multi-input-multi-output (MIMO) and higher-
order systems. In this paper, we further extend EPID to 
nonminimum phase systems and investigate its performance 
limitation. EPID uses feedback of all state tracking errors. But 
for nonminimum phase systems, the reference trajectories for 
the internal states are unknown (assuming we do not have the 
system model), making us decide to take out the internal states 
from the integral part to avoid an unbounded input, which 
results in a slightly different controller form. Besides, in 
previous study, we found an important property of EPID is that 
it can achieve accurate tracking/rejecting for time-varying 
references/disturbances by using a high integral gain. However, 
when applied to nonminimum phase systems, we found that the 
integral gain cannot be set too high, otherwise the closed-loop 
system will be unstable, which indicates an inherent 
performance limitation. To verify this, simulation results are 
provided by applying EPID to a hypersonic vehicle model and a 
cart pole system. 

Keywords—PID Control, Nonminimum Phase Systems, 
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I. INTRODUCTION 
Proportional-integral-derivative (PID) control is perhaps 

the most popular controller in the control field. However, it 
does have some drawbacks in its current form such as the 
single-input-single-output (SISO) property, which makes it 
inconvenient to apply it to complex systems. To this end, we 
proposed the concept of extended PID (EPID) control in our 
previous work [1], which rewrites the PID controller in state 
space. Compared to PID control, EPID uses feedback of all 
state tracking errors instead of only using the output error, 
making it more suitable for multi-input-multi-output (MIMO) 
and higher-order systems. In [1], we reported an important 
property of EPID, that is, it can achieve accurate 
tracking/rejecting for time-varying references/disturbances by 
using a high integral gain. However, when it comes to 
nonminimum phase systems, this is no longer true.  

In the control field, it has long been realized that the 
nonminimum phase property is a main restriction of control 
design. Nonminimum phase property not only makes it 
challenging to design a stable controller but also brings 
fundamental limitations to the control performance. Firstly, 
there is an inherent limitation in the tracking control error for 
nonminimum phase systems. It is shown in [2] that minimum 
phase is a necessary condition for asymptotic tracking for 
arbitrary trajectories. Reference [3] points out that it is 
possible to achieve perfect tracking when there are no unstable 
zero dynamics, that is, the L2 norm of the tracking error can 
be arbitrarily small. But it becomes impossible when there are 

unstable zero dynamics since some amount of “output energy” 
must be applied to stabilize the zero dynamics. Similarly, 
when tracking a step signal, the phenomenon of undershoot or 
overshoot [4] occurs for nonminimum phase systems, which 
depends on the unstable zeros. With the nonminimum phase 
zeros closer to the original and a shorter preview time of the 
future reference, the tracking performance is worse [5]. 
Besides, the nonminimum phase property also affects the 
bandwidth and robustness of the closed-loop system [6]. As 
we know, for linear systems, the poles of the closed-loop 
system move towards the open-loop zeros as the control gain 
increases. Therefore, for systems with unstable zeros, the 
control gain cannot be too large to maintain stability. This 
restricts the application of high-gain feedback to nonminimum 
phase systems and thus limits the robustness of the system.  

The application of PID control to nonminimum phase 
systems has also been studied, where many of them focused 
on parameter tuning. Due to the instability of nonminimum 
phase systems,  it is important to select proper PID parameters 
to ensure stability. In [7], a PID controller tuned by the gain-
phase margin method is proposed for a non-minimum phase 
system with an uncertain time delay. In [8], a tuning method 
is developed for the stabilization of non-minimum phase 
second-order plus time delay systems. In [9], a PID controller 
is designed for a class of fourth-order nonminimum-phase 
systems and a parameter tuning method is proposed based on 
Routh-Hurwitz criteria.   In [10], a PID controller is designed 
for a non-minimum phase DC-DC converter, and the 
parameters are tuned to achieve better robustness by using the 
quantitative feedback theory along with particle swarm 
optimization. In [11], a method is proposed to tune the PID 
controller for MIMO systems. However, all the work above 
are still based on the traditional PID control framework which 
uses transfer function as the main tool for analysis. While in 
the EPID framework, full-state feedback is used and thus 
stability can be easily guaranteed by using pole assignment to 
determine the control gain matrix. However, the influence of 
the integral gain still needs to be studied. 

In this paper, we extends EPID to nonminimum phase 
systems and then investigate its performance limitations using 
examples of two nonminimum phase systems, including a 
hypersonic vehicle model and a cart pole system. Results 
show some interesting properties. On one hand, the integral 
gain cannot be set too high for nonminimum phase systems, 
otherwise the closed-loop system will be unstable. On the 
other hand, although the performance limitation exists, using 
integral control is still very useful to reduce steady-state error 
for some weak nonminimum phase systems such as the 
hypersonic vehicle. This paper enriches the EPID framework 
and the obtained results may be helpful when designing EPID 
controller for other nonminimum phase systems. 



II. THE EPID CONTROL FRAMEWORK

The EPID control framework proposed in this paper is 
shown in Fig. 1. EPID has two equivalent forms, including a 
proportional-integral tracking controller (PITC) and an 
adaptive-feedforward tracking controller (AFTC). EPID has 
slightly different forms when applied to minimum-phase and 
nonminimum-phase systems. 

A. EPID for Minimum Phase Systems 
The state-space model of a minimum phase system can be 

generally written as follows: 
 ,x = F x u d,x = F x u,   (1) 
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By using the state error instead of the output error in PID, 
the EPID controller is written as follows 
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d
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where pK  is the proportional gain matrix and iT  is the 
integral time. We call this form PITC. The derivative part is 
merged into the proportional part since the state error rx x  
includes the output derivative when the relative degree > 1.  

EPID can be also written in another form as follows 

 it Tp ru K x x u   (3) 
where the input is a sum of the previous input with a time 
delay and the state error feedback. We call this form AFTC. 

B. EPID for Nonminimum Phase Systems 
A general form of a MIMO nonminimum phase system 

can be written as follows: 

 
,
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ξ = F x u + d
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ξ = F x u1 ,

q = F x u2 ,
     (4) 

where , Tx = ξ q  is the state with q  being the internal state 

and 1 11
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external state.  

In this system, the internal dynamics are not stable. 
Therefore q  must be used in the feedback control to ensure 
stability. However, the problem is that the internal state 
reference rq  is not known. In fact, rq  should be a bounded 
solution of the unstable zero dynamics, which is called ideal 
internal dynamics (IID) [12]. If the system model is known, 
then rq   can be solved by using stable inversion [13], output 
regulation [14], or optimal bounded inversion [15]. However, 
in the EPID framework, we emphasize using minimum system 
information. Therefore, the exact solution of rq  will not be 
part of the EPID framework. We are interested in how to 
extend EPID to nonminimum phase systems without 
calculating rq . Anyhow, the unknown of exact rq  is the first 
factor that prevents the nonminimum phase system from 
accurate tracking. 

Our method is to use a constant 0q  as the best guess for 

rq . The value 0q  can be decided by our experience with the 
operation range of the variable q , such as choosing the 
median or directly setting to 0  if the operation range is small.  

 
Fig. 1  The EPID control framework. 



The second step is to determine the controller structure. 
We may imagine using the same EPID structure designed for 
minimum phase system by taking , T

r r 0x ξ q . But this is 

not feasible. Recall the AFTC it Tp ru K x x u , 
consider constant reference/disturbance, then we have 

r
p r p

0

ξ ξ
K x x K 0

η η
 at steady state. However, this 

does not indicate rx x 0  since 0q  possibly does not equal 
the IID which means 0η η  and thus rξ ξ 0 . Therefore, 
although an integral term is used, there may still exist a steady 
state error. To solve this problem, we use the following PITC 
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and the corresponding AFTC  
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For this controller, we have it Tv v  at steady state 

and thus ξ rK ξ ξ 0 , so 0rξ ξ  and there will be no 
steady-state error. It is compatible with the previous EPID if 
we remove the internal state feedback q 0K q q .  

Therefore, the EPID framework is completed for both 
minimum and nonminimum phase systems. However, it is 
well known that nonminimum phase systems have 
fundamental performance limitations. Reflecting in EPID is 
that the integral gain cannot be set too high, otherwise the 
closed-loop system will be unstable.  This is the second factor 
that prevents the nonminimum phase system from good 
tracking. We will show this in the simulations. 

III. THE HYPERSONIC VEHICLE MODEL 
A hypersonic vehicle (Fig. 2) refers to a vehicle that travels 

at least five times the speed of sound. In this paper, we 
consider a flexible hypersonic vehicle model [16].  

 
Fig. 2  A typical hypersonic vehicle: the X-43. 

According to [16], the longitudinal dynamics of the 
vehicle are written as follows 
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The model is composed of five rigid-body states 
, , , , TV h Qx , representing velocity, altitude, flight path 

angle, pitch angle, and pitch rate, respectively, and six flexible 
states 1 1 2 2 3 3, , , , , Tη 3

T
1 2 2 31 2 2 31 2 2 32 2 31 2 2  corresponding to the first 

three flexible modes of the fuselage. There are three control 
inputs , , T

e cu , representing fuel to air ratio in the 
scramjet engine, the elevator deflection angle, and the canard
deflection angle, respectively. The control inputs indirectly 
affect the dynamics through the forces and moments T , D , 
L , M  and iN  with the expressions given by 
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where 
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The angle of attack  satisfies . The dynamic 
pressure q  is calculated by 2 / 2q h V  with 

0 /
0 e sh h hh  being the atmospheric density. The 

values for the model parameters can be found in [16]. 

For the hypersonic vehicle model (7), it is fully actuated 
and minimum phase when the canard is enabled (i.e., c  
available). However, when the canard is disabled, (i.e., 

0c ), it becomes a nonminimum phase system [16]. This 
provides us a good chance to test EPID in both cases and 
compare the performances to explore the influence of the 
nonminimum phase property. 

IV. SIMULATION RESULTS 

A. Hypersonic Vehicle with Canard 

When the canard is on, the outputs are , , TV hy and 

the inputs are , , T
e cu , the references are 

, , T
r r rV hry .  The flexible states are treated as 

disturbance and the state , , , , TV h Qx  is used in the 
EPID controller. 

The initial condition is 0 7850,86000,0,0.0237,0 Tx , 
0η 0 . The altitude reference rh  is generated by filtering a 

step command (from 86000 ft to 99000 ft) with two second-



order filters with a natural frequency of 0.03 /f rad s  and 
a damping factor of 0.95f . The velocity reference is 

computed by 
1/2

0 02 exp / /r r sV q h h h  to maintain 
a constant dynamic pressure. The flight path angle reference 
is obtained by asin /r r rh VV/ . The pitch angle reference is 

given by 0.0237r r  and pitch rate velocity r rQ . So 
all the state references , , , , T

r r r r rV h Qrx  are known.  

The control inputs are limited by 0,1.5 , 

, 20,20 dege c . The control parameters are selected as 

-0.312 0 1.67 -1.84 -0.146
-0.000989 -0.0521 -125 0.357 0.256

0.00531 -0.026 -60.6 -8.38 -1.39
PK . Two integral 

gains are tested, 0ik  and 100ik . 

The simulation results for the three outputs are shown in 
Figs. 3-5. It can be seen that a steady-state error exists for each 
output without the integral control.  With a large integral gain 

100ik , the system still keeps stable and all the tracking 
errors converge to zero rapidly with a minor initial error. The 
performance is comparable with the nonlinear controller 
designed in [16].  

 

 
Fig. 3  Velocity tracking results. 

 

 

 
Fig. 4  Altitude tracking results. 

 

 

 
Fig. 5  Pitch angle tracking results. 

The control inputs are shown in Fig. 6. It can be seen that 
the inputs have some oscillation at the beginning, then change 
smoothly throughout the task. 

The results are consistent with our conclusion in [1] that a 
high integral gain can be set in EPID to achieve accurate 
tracking for minimum phase systems. 

Fig. 6  Control inputs. 

B. Hypersonic Vehicle without Canard 
Now assume that the vehicle has no canard, that is, c  is 

set to zero in the model. Then it becomes a nonminimum 
phase system. The outputs are , TV hy  now. The external 

states are , , TV hξ  and internal states are , TQq . 
The control parameters are designed as 0q 0 , 

0.036, 0.042, 320
0.0037, 0.002, 19.7ξK , and 

51, 8.7
3.1, 0.78qK . 

The simulation results are shown in Figs. 7-8. 

It can be observed that there is a big steady-state error for 
both outputs when 0ik . As ik increases to 1, the steady-
state error is eliminated, and the overall tracking performance 
has a significant improvement. However, we also test 2ik  
and bigger values but find them unstable.  



 

 
Fig. 7  Velocity tracking results (no canard). 

 

 
Fig. 8  Altitude tracking results (no canard). 

V. APPLICATION TO A CART-POLE SYSTEM 
To further test EPID, we consider another nonminimum 

phase system, a cart-pole system as shown in Fig. 9.  

u

x

 
Fig. 9  The cart-pole system. 

The model is 
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where u  is an external force imposed on the cart, x  is the 
cart position,  is the pole angle, m and M  are the mass of 
the pole and the cart, respectively, l  is the half length of the 
pole.  

For this system, the external and internal states are 
, Tx vξ and , Tq , respectively. The output is x . 

In the simulation, the model parameters are selected as 
1m kg , 10M kg , 1l m , and 29.8 /g m s . The initial 

condition is set to zero for all states. As a practical 
consideration, the control input is assumed to be limited in 
the range 30,30u .  The control parameters are selected 

as 0,0 T
0q , 5, 10ξK , and 250,80qK .   

The simulation results are shown in Figs. 10-11. From Fig. 
10, it can be seen that the pole is stabilized around the vertical 
up position ( 0 ) for 0ik  and 0.2ik , but exhibits a 
divergence when 0.7ik . From Fig. 11, it can be observed 
that the tracking performance is not good. The system 
becomes unstable when 0.7ik . And a smaller integral gain 

0.2ik  does not help improve the tracking performance but 
brings more oscillation compared to 0ik . This further 
verifies the performance limitations for nonminimum phase 
systems.  

 
Fig. 10  Pole angle. 

 

 

 
Fig. 11  Cart position and tracking error. 

VI. DISCUSSION 
Comparing the hypersonic vehicle and cart pole examples, 

they both show that the integral gain cannot be too high for 
nonminimum phase systems. So we would like to ask if a 
small integral gain is helpful to improve the tracking 
performance. The answer is not sure as pointed out by the two 
examples, where a small integral gain helps in the hypersonic 
vehicle example but does not in the cart-pole example. There 
are two possible explanations. On one hand, the reference 
trajectory for the hypersonic vehicle changes much more 
slowly than that for the cart-pole system. The tracking 



performance for the hypersonic vehicle may get worse if a 
more aggressive reference is selected. So performance 
limitations still exist. On the other hand, a cart-pole system is 
probably a strongly nonminimum phase system [17] while the 
hypersonic vehicle is a slightly nonminimum phase system 
[18]. Therefore, the performance limitations are more severe 
for the cart-pole system. In practice, we should decide whether 
to use the integral action for a nonminimum phase system 
based on the actual situation. 

VII. CONCLUSIONS 
In this paper, we complete the EPID control framework by 

proposing its variation for nonminimum phase systems. 
Compared to PID, EPID is based on state space, which makes 
full use of system states and can be applied to both SISO and 
MIMO, lower-order and higher-order, minimum phase and 
nonminimum phase systems. On one hand, EPID retains the 
simplicity of PID control. It only requires minimum model 
information, including the state information and the structure 
information (minimum phase or nonminimum phase). On the 
other hand, EPID makes full use of the state information and 
is more specified for different systems, such as SISO/MIMO, 
lower-order/higher-order, and especially minimum 
phase/nonminimum phase systems, which are treated 
differently. For minimum phase systems, the integral gain can 
be set very high to achieve accurate tracking. But for 
nonminimum phase systems, the integral gain cannot be set 
too high to ensure stability, which reflects the performance 
limitation. The points are illustrated through the hypersonic 
vehicle and the cart pole examples. In the further, we will do 
further study and give a more rigorous analysis of this 
phenomenon. 
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