
SCIENCE CHINA
Technological Sciences

© Science China Press and Springer-Verlag Berlin Heidelberg 20** tech.scichina.com link.springer.com

*Corresponding author (email: yelinqi@shu.edu.cn)

• Letter • *** 2025 Vol.** No.*: ***–***

 doi: 10.1007/s11431-****

Gewu Playground: An Open-Source Robot Simulation Platform

for Embodied Intelligence Research

Linqi Ye1*, Boyang Xing2, Bin Liang3, Lei Jiang2, Yan Peng1

1School of Future Technology, Shanghai University, 200444 Shanghai, China;
2National and Local Co-Built Humanoid Robotics Innovation Center, 201203 Shanghai, China;

3Navigation and Control Research Center, Department of Automation, Tsinghua University, 100084 Beijing, China

Citation: Ye L Q, et al. GeWu Playground: An Open-Source Robot Simulation Platform for Embodied Intelligence Research. Sci China Tech Sci, 2025.

Embodied intelligence, which integrates robotics and

artificial intelligence, relies heavily on simulation platforms

to develop adaptive behaviors through perception, cognition,

and action. Traditional robotic simulation tools such as

Webots [1], Gazebo [2], and V-REP [3] have significantly

contributed to the field by supporting kinematic and

dynamic model-based research. However, the advent of

learning-based methods, particularly reinforcement learning

(RL), has created a demand for platforms specifically

designed to facilitate these approaches, with IsaacLab [4],

MuJoCo Playground [5], and Genesis emerging as key

solutions. IsaacLab provides a high-fidelity NVIDIA

simulation toolkit with photorealistic rendering, supporting

multi-modal robotic platforms via a unified API for

seamless reinforcement learning algorithm integration;

MuJoCo Playground leverages the MuJoCo physics engine

for rapid sim2real policy iteration, featuring on-device

rendering, domain randomization, and pre-built benchmarks

across quadrupeds, humanoids, and dexterous manipulators;

while Genesis employs data-driven generative physics

modeling to create dynamic simulation environments for

manipulation and locomotion tasks, enabling on-the-fly

scenario generation for scalable experimentation.

 Unity, primarily known as a game engine, has emerged

as a powerful tool for embodied AI research, offering

frameworks like AI2-Thor [6] and Unity ML-Agents Toolkit

[7] that provide intuitive environments for training

intelligent agents. Unity offers unique advantages for

embodied intelligence research by providing

near-photorealistic rendering and multi-modal inputs for

perception tasks, integrating advanced physics engines for

dynamic interactions like deformable objects, and enabling

hierarchical tasks and multi-agent collaboration through C#

scripting—features that surpass MuJoCo’s limited state

inputs and lack of multi-agent support, as well as IsaacSim’s

focus on robotic fleets over sensory and dynamic

environment flexibility.

 ****, et al. Sci China Tech Sci *** (20**) Vol.** No.*

Built on Unity, we introduce Gewu Playground

(https://github.com/loongOpen/Unity-RL-Playground/), a

comprehensive, open-source robot simulation platform that

supports a wide range of embodied intelligence tasks. Gewu

Playground extends the capabilities of Unity RL Playground

[8], offering enhanced features for locomotion,

manipulation, and navigation tasks. It is designed to

facilitate rapid prototyping, accommodate diverse robot

types, and enable seamless sim2real transfer via ROS2

integration. Core to Gewu Playground are three innovations

addressing key embodied intelligence challenges: an

efficient instruction learning-based RL framework; low-cost

hardware requirements enabling efficient CPU-based

training accessible to broader researchers; and deep

integration with Unity’s ecosystem to leverage its

high-quality simulation capabilities, including photorealistic

multi-modal rendering, flexible physics (rigid/soft-body,

fluid dynamics), and modular scripting.

(a) Gewu Playground Main Menu

(b) Comparison of Gewu and IsaacLab (c) Lunar Locomotion with Gewu

Figure 1 Gewu Playground Introduction.

https://github.com/loongOpen/Unity-RL-Playground/

 ***, et al. Sci China Tech Sci *** (20**) Vol.* No.*

Gewu Playground integrates eight specialized modules

(Fig. 1a): universal locomotion, uneven terrain locomotion,

motion imitation, Sim2Real transfer, robot soccer, mobile

manipulation, autonomous navigation, and robot animation.

Each module provides guided examples and supports the

import of custom robot models with minimal configuration

overhead, ensuring accessibility across diverse research

applications.

The platform leverages Unity’s modular ecosystem,

utilizing the URDF Importer package to seamlessly convert

Unified Robot Description Format (URDF) models into

Unity’s ArticulationBody components for high-fidelity

physics simulation. For reinforcement learning, Gewu

Playground employs the ML-Agents toolkit, which supports

Proximal Policy Optimization (PPO), Soft Actor-Critic

(SAC), as well as Multi-Agent Policy Optimization with

Credit Assignment (MA-POCA) algorithms, ensuring robust

policy optimization across various robotic tasks.

Gewu aims to be an inclusive embodied intelligence

platform accessible to all. A key feature of Gewu

Playground is its high learning efficiency achieved through

Instruction Learning [9]. Unlike IsaacLab, which needs

high-end GPUs like GeForce RTX 4080, Gewu can train

efficiently on CPUs, achieving equal-level results with far

fewer simulation timesteps (Fig. 1b). This shows its high

“learning efficiency per step”. While recognizing GPUs’

value for large-scale tasks, Gewu is collaborating with

Unity China to upgrade the PhysX engine for

GPU-accelerated parallel simulation, which will boost step

throughput 10–20x while still supporting CPU-only use.

The platform’ high-quality simulation features and terrain

construction tools make it an ideal environment for training

robots for extraterrestrial exploration, such as lunar or

Martian missions. To demonstrate Gewu Playground’s

capabilities, we investigated locomotion strategies for

humanoid robots under lunar low-gravity conditions (Fig.

1c). The lunar environment’s unique physical characteristics,

particularly its reduced gravity (1/6 of Earth’s), pose

significant challenges for robotic movement and balance.

Simulating these conditions during training is essential for

enabling robots to develop adaptive locomotion strategies.

Using the Unitree G1 robot within Gewu Playground, we

trained two efficient locomotion patterns: running and

jumping. The control architecture employed a hybrid neural

network, combining a conventional learnable neural

network with a temporal network that injects open-loop

actions based on time variables. This architecture allowed

for efficient learning and the development of stable

locomotion policies.

The lunar surface terrain was constructed using Unity

Terrain Editor, which enabled precise replication of the

Moon’s cratered landscape and undulating terrain. Training

involved creating multiple replicas of the robot, each with a

randomly chosen yaw angle, to experience diverse ground

conditions. The robots were trained for 10 million steps

each on running and jumping tasks, achieving stable and

efficient locomotion policies.

Performance evaluation revealed that the running policy

consistently outperformed the jumping policy in terms of

travel distance and stability. These findings provide

valuable insights for future robotic lunar exploration

missions, demonstrating Gewu Playground’s ability to train

adaptive movement strategies for humanoid robots in

extraterrestrial environments.

Gewu Playground represents a significant advancement

in robot simulation platforms, offering a unified,

user-friendly framework for embodied intelligence research.

Its key innovations include universally efficient

reinforcement learning framework, ease of use with low

hardware requirements, and seamless integration with

Unity’s rich ecosystem. The platform supports a wide range

of tasks, including locomotion, manipulation, and

navigation, making it suitable for both traditional and

learning-based robotic research.

By lowering technical barriers, Gewu Playground

empowers a broader range of researchers to contribute to

the next generation of intelligent robotic systems. Its future

plans include enabling GPU-accelerated training, adapting

to more physical robot models, and expanding embodied

intelligence applications. With its versatile learning

architecture, Gewu Playground is poised to accelerate the

transition from laboratory prototypes to interplanetary

robotic systems, aligning with global space initiatives.

This work was supported by the Shanghai “Science and Technology

Innovation Action Plan” Next-Generation Information Technology Domain

Key Technology Breakthrough Program (Grant No. 24511103304).

1 Michel, O. (2004). Cyberbotics ltd. Webots™: professional mobile

robot simulation. International Journal of Advanced Robotic Systems,

1(1), 5.

2 Koenig, N., & Howard, A. (2004, September). Design and use

paradigms for gazebo, an open-source multi-robot simulator. In 2004

IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) (Vol. 3, pp. 2149-2154). IEEE.

3 Rohmer, E., Singh, S. P., & Freese, M. (2013, November). V-REP: A

versatile and scalable robot simulation framework. In 2013 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS)

(pp. 1321-1326). IEEE.

4 Mittal, M., Yu, C., Yu, Q., Liu, J., Rudin, N., Hoeller, D., ... & Garg,

A. (2023). Orbit: A unified simulation framework for interactive

robot learning environments. IEEE Robotics and Automation

Letters, 8(6), 3740-3747.

5 Zakka, K., Tabanpour, B., Liao, Q., Haiderbhai, M., Holt, S., Luo, J.

Y., ... & Abbeel, P. (2025). Mujoco playground. arXiv preprint

arXiv:2502.08844.

6 Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L., Herrasti,

A., ... & Farhadi, A. (2017). Ai2-thor: An interactive 3d environment

for visual ai. arXiv preprint arXiv:1712.05474.

7 Juliani, A., Berges, V. P., Teng, E., Cohen, A., Harper, J., Elion, C., ...

& Lange, D. (2018). Unity: A general platform for intelligent agents.

arXiv preprint arXiv:1809.02627.

8 Ye, L., Li, R., Hu, X., Li, J., Xing, B., Peng, Y., & Liang, B. (2025).

Unity RL Playground: A Versatile Reinforcement Learning

Framework for Mobile Robots. arXiv preprint arXiv:2503.05146.

9 Ye, L., Li, J., Cheng, Y., Wang, X., Liang, B., & Peng, Y. (2023).

From knowing to doing: learning diverse motor skills through

instruction learning. arXiv preprint arXiv:2309.09167.

SCIENCE CHINA
Technological Sciences

© Science China Press and Springer-Verlag Berlin Heidelberg 20** tech.scichina.com link.springer.com

*Corresponding author (email: ****)

• Supplementary File• *** 2025 Vol.** No.*: ***–***

 doi: 10.1007/s11431-****

Gewu Playground: An Open-Source Robot Simulation Platform

for Embodied Intelligence Research

Linqi Ye1, Boyang Xing2, Bin Liang3, Lei Jiang2, Yan Peng1

1School of Future Technology, Shanghai University, 200444 Shanghai, China;
2National and Local Co-Built Humanoid Robotics Innovation Center, 201203 Shanghai, China;

3Navigation and Control Research Center, Department of Automation, Tsinghua University, 100084 Beijing, China

Embodied intelligence, robot simulation, reinforcement learning, lunar locomotion, humanoid robot.

S1 Introduction

Embodied intelligence represents the combination of

robotics and artificial intelligence, where simulation

platforms provide the essential infrastructure for robots to

develop adaptive behaviors through integrated perception,

cognition, and action—bridging the gap between virtual

training and real-world deployment.

The evolution of robotics has been inextricably linked to

simulation platforms, with a series of influential and widely

adopted tools emerging since the 1990s. Notable examples

include: Webots (1998) [1]: Developed by the Cyberbotics

company, renowned for its physics-accurate rendering and

cross-platform compatibility; Gazebo (2004) [2]: Rapidly

gained prominence through ROS integration; V-REP (2013,

now CoppeliaSim) [3]: Featuring a modular architecture

that supports multiple physics engines concurrently. Those

robotic simulation platforms reveals distinct functional

paradigms: Webots prioritizes perceptual fidelity with

photorealistic rendering and standardized robot models,

facilitating perception-driven navigation research; Gazebo

dominates open-source academic research via its scalable

plugin ecosystem, ROS-native integration, and support for

large-scale multi-agent simulations, as evidenced by its

widespread adoption in DARPA Robotics Challenge; while

V-REP (CoppeliaSim) excels in modular versatility,

supporting multiple physics engines and rendering modes

through its distributed architecture, making it ideal for

industrial manipulation prototyping. These platforms

collectively address the fidelity-performance tradeoff and

usability-flexibility balance, reflecting evolving efforts to

bridge simulation-to-reality gaps through enhanced physics

modeling and sensor simulation, as underscored by recent

comparative studies [4,5].

While the aforementioned simulation platforms have

achieved remarkable success in traditional robotic control

field by primarily supporting algorithm development based

on kinematic and dynamic models, recent years have

witnessed a paradigm shift: model-based approaches are

being increasingly superseded by learning-based methods,

with reinforcement learning [6-8] emerging as the dominant

framework for robotic control. To better accommodate the

demands of robotic reinforcement learning, a proliferation

of novel simulation platforms has emerged in recent years

[9].

OpenAI Gym [10], a foundational framework for

reinforcement learning algorithm development, provides

standardized environments for benchmarking control

policies, including classical robotic tasks like CartPole and

MountainCar, and has been extended to robotics via the

Roboschool and PyBullet integrations. PyRep [11], built

atop V-REP, bridges the gap between traditional robotic

simulation and deep learning by offering a Python API for

rapid scene construction, domain randomization, and

real-time sensor simulation, enabling end-to-end training of

vision-based manipulation policies. Legged Gym [12]

specializes in legged robotics, offering GPU-accelerated

 ****, et al. Sci China Tech Sci *** (20**) Vol.** No.*

physics simulations to efficiently train locomotion policies

across diverse robot morphologies and terrains, with

emphasis on rapid experimentation and sim2real

deployment. Humanoid-Gym [13], built on NVIDIA Isaac

Gym, focuses on humanoid robot locomotion through

zero-shot sim2real transfer, incorporating domain

randomization and advanced reward shaping for policy

robustness. IsaacLab [14] provides a high-fidelity NVIDIA

simulation toolkit with photorealistic rendering, supporting

multi-modal robotic platforms via a unified API for

seamless reinforcement learning algorithm integration.

MuJoCo Playground [15] leverages the MuJoCo physics

engine [16] for rapid sim2real policy iteration, featuring

on-device rendering, domain randomization, and pre-built

benchmarks across quadrupeds, humanoids, and dexterous

manipulators. Finally, Genesis [17] employs data-driven

generative physics modeling to create dynamic simulation

environments for manipulation and locomotion tasks,

enabling on-the-fly scenario generation for scalable

experimentation.

Besides, Unity is primarily known as a game engine, has

emerged as a powerful platform for Embodied AI research,

enabling the development of interactive 3D environments

for robot learning. Notable frameworks built on Unity

include AI2-Thor [18], which provides photorealistic indoor

scenes for visual navigation tasks, and Unity ML-Agents

Toolkit [19], which provides a user-friendly and versatile

framework for the training of intelligent agents through

reinforcement learning. Unity ML-Agents is designed to be

intuitive and easy to use, with a focus on rapid development

of games.

Table 1 Comparative Summary: Unity vs. MuJoCo/IsaacSim

Feature Unity MuJoCo IsaacSim

Sensory

Simulation

Multi-modal,

photorealistic
rendering

Low-dimension

state inputs only

GPU-rendered but

physics-prioritized

Physical

Dynamics

Rigid/soft-bod
y + real-time

object

spawning

Excellent
rigid-body

(fixed models

only)

GPU-accelerated

(fleet-focused)

Task/Multi

-agent

Hierarchical

tasks + native
networking

Single-task (no

multi-agent)

Robotic control

(limited
customization)

Unlike pure robotic control, embodied RL requires

multi-dimensional environmental complexity (sensory,

physical, task-logic, social) to bridge the reality gap—an

area where Unity has particular advantages, as shown in

Table 1. First, Unity supports near-photorealistic rendering

(dynamic lighting, custom shaders) and multi-modal inputs

(depth maps, LiDAR emulation), critical for

pixel-level/multi-modal perception tasks. In contrast,

MuJoCo focuses on low-dimensional state inputs, while

IsaacSim prioritizes physics over sensory flexibility. Second,

Unity integrates industry-leading physics engines (NVIDIA

PhysX, Havok), enabling rigid-body, soft-body, and fluid

dynamics—supporting dynamic interactions (e.g.,

deformable objects, real-time obstacle spawning). MuJoCo

lacks flexible object instantiation, and IsaacSim is

optimized for large robotic fleets but not dynamic

environment design. Third, Unity’s C# scripting enables

hierarchical tasks and multi-agent collaboration via built-in

networking. MuJoCo has no multi-agent support, and

IsaacSim limits interactions to agent-robot scenarios.

Based upon Unity, we developed Unity RL Playground

[20], a dedicated reinforcement learning framework for

mobile robots. It is designed to be operated with minimal

programming expertise, allowing users to easily import their

custom robot models for comprehensive multi-modal

motion training. However, Unity RL Playground was

originally designed for locomotion tasks of mobile robots,

restricting its applicability to broader embodied intelligence

tasks. To address this, we developed the Gewu Playground

as an enhanced extension of Unity RL Playground,

transforming it into a comprehensive research platform for

embodied intelligence with multi-domain task support.

(a) Indoor near-photorealistic rendering (b) Ourdoor near-photorealistic rendering

(c) Rigid-body and soft-body interaction (d) Rigid-body and fluid interaction

Figure 1 Gewu high-quality simulation capabilities.

Gewu Playground integrates three core innovations to

address key challenges in embodied intelligence research:

first, an efficient reinforcement learning framework built on

the instruction learning paradigm, which achieves high

“learning efficiency per step” by synergizing feedforward

action primitives with RL-based stabilization, enabling

rapid policy convergence even for complex tasks; second,

low-cost hardware requirements that eliminate dependency

on high-end GPUs—training can be completed efficiently

on standard CPUs, making embodied intelligence research

accessible to a broader audience; third, deep integration

with Unity’s ecosystem and access to its high-quality

 ***, et al. Sci China Tech Sci *** (20**) Vol.* No.*

simulation capabilities (see Figure 1), leveraging its

photorealistic multi-modal rendering, flexible physics

simulation (rigid-body, soft-body, fluid dynamics), and

modular scripting to support diverse task scenarios from

terrestrial manipulation to extraterrestrial locomotion.

In the coming era, embodied intelligence will transcend

terrestrial boundaries—not only reshaping our daily life

through intelligent agents but also spearheading humanity’s

expansion into space, as evidenced by China’s 2035 vision

for the International Lunar Research Station and SpaceX’s

Mars Base Alpha initiative. This cosmic frontier poses

unprecedented challenges for robotic exploration: the lunar

and Martian gravities—merely 1/6 and 3/8 of

Earth’s—combined with unique terrains demand radical

rethinking of locomotion control. Previous research has

primarily focused on quadrupedal robot locomotion on the

Moon and Mars [21,22], while studies involving humanoid

robots remain scarce. Addressing these extraterrestrial

constraints, Gewu Playground emerges as a universal

simulation infrastructure that enables cross-planetary

dynamics modeling via adjustable gravity fields and terrain

construction supports. By bridging the sim2real gap for both

terrestrial and extraterrestrial environments, Gewu

Playground establishes itself as a critical enabler for

space-ready embodied intelligence, accelerating the

transition from laboratory prototypes to interplanetary

robotic systems.

The contributions of this paper are as follows. First, we

develop the framework of Gewu Playground. Compared to

Unity RL Playground, Gewu Playground has undergone a

comprehensive upgrade, not only expanding locomotion

tasks to include complex terrain adaptation and whole-body

imitation learning but also introducing new modules

including imitation learning, manipulation, and navigation.

Furthermore, it integrates ROS2 to enable

higher-performance and more universal sim2real transfer

capabilities. Second, leveraging the Gewu Playground

framework, we investigated locomotion strategies for

humanoid robots under lunar low-gravity conditions,

successfully training two efficient locomotion

patterns—running and jumping—which were validated

through simulation on virtual lunar terrain. These findings

provide critical technical support for future robotic lunar

exploration missions.

S2 Gewu Playground Framework

Gewu Playground framework is shown in Figure 2.

Leveraging Unity’s modular ecosystem, we streamline

robotic system integration through the URDF Importer

package, which enables seamless conversion of Unified

Robot Description Format (URDF) models into Unity’s

ArticulationBody components—optimized for high-fidelity

physics simulation via the PhysX engine. For reinforcement

learning implementation, we utilize the ML-Agents toolkit,

which provides PyTorch-backed training pipelines

supporting Proximal Policy Optimization (PPO), Soft

Actor-Critic (SAC) algorithms, and Multi-Agent Policy

Optimization with Credit Assignment (MA-POCA),

ensuring policy optimization across diverse robotic tasks.

Figure 2 Gewu Playground framework.

Gewu Playground currently integrates eight specialized

modules—universal locomotion, uneven terrain locomotion,

motion imitation, Sim2Real transfer, robot soccer, mobile

manipulation, autonomous navigation, and robot

animation—where the first three modules form the

foundational reinforcement learning training infrastructure

for developing core robotic motor skills, enabling

subsequent adaptation to complex tasks; each module

includes guided examples demonstrating its functionality,

and recognizing the need for custom hardware integration,

we provide an intuitive template for importing and training

user-defined robotic models with minimal configuration

overhead, ensuring seamless accessibility across diverse

research applications.

(1) Universal Locomotion

This module facilitates foundational locomotion training

for diverse robotic morphologies, including bipedal,

quadrupedal, biped-wheeled hybrid, and

quadruped-wheeled hybrid systems. As presented in Figure

3, we have tested over 80 different robots using Gewu

Playground.

Figure 3 Diverse robot support of Gewu playground.

For each configuration, we provide three distinct motion

control modes implemented via an instruction learning [23]

paradigm that synergizes feedforward action primitives with

reinforcement learning-based stabilization. To streamline

 ****, et al. Sci China Tech Sci *** (20**) Vol.** No.*

user interaction, we developed a dedicated setup interface

within Unity’s Inspector panel (Figure 4, right), enabling

intuitive specification of robot type and target motion

patterns during URDF model import. The training workflow

is further optimized through a “Fixbody” validation toggle,

allowing users to pre-verify feedforward action correctness

before training. For computational efficiency, the system

automatically spawns 32 parallel robot instances during

training, achieving 20× real-time simulation acceleration

while maintaining physics fidelity through Unity’s

deterministic PhysX integration. It should be noted that

GPU-based parallel training is currently not supported;

however, the training speed remains highly efficient,

depending primarily on CPU performance. Even with a

standard laptop, training can typically be completed within

tens of minutes to a few hours.

Figure 4 Universal locomotion diagram.

Figure 5 Reward curves for universal locomotion.

Table 2 Training Details for Universal Locomotion

Robot
Tron1-

walk

G1-

walk

Go2-

trot

Go2w

-walk

Loong

-run

X02-

jump

Simulation

timesteps

(million)

4 2 1 1 3 2

Time for
training

(hour)
0.31 0.19 0.10 0.10 0.33 0.17

We employed a laptop (Intel(R) Core(TM) i9-14900HX

CPU and an NVIDIA GeForce RTX 4080 GPU) for training.

The reward curve is depicted in Figure 5, and the training

details are listed in Table 2. It can be observed that all six

locomotion tasks can be trained and completed within a

very short time (1 to 4 million timesteps, spanning 0.1 to 0.3

hours).

(2) Rough Terrain Locomotion

To train complex terrain locomotion capabilities, we

developed a pyramid staircase environment incorporating

both convex (upward) and concave (downward) stairs. The

neural network architecture remained identical to prior

implementations, with the key innovation being the

adoption of a terrain-adaptive curriculum learning strategy.

During training, we progressively increased step heights

from 5 cm to 10 cm, and subsequently to 15 cm, to

systematically enhance environmental complexity. Four

humanoid robots with distinct structural designs and

physical dimensions were selected for training, all of which

ultimately demonstrated proficient stair climbing and

descending abilities.

We employed a laptop (Intel(R) Core(TM) i9-14900HX

CPU and an NVIDIA GeForce RTX 4080 GPU) for training.

For the four robots, we trained each for 20 million timesteps,

and the time taken ranged from 1.28 to 1.57 hours. The

reward curve is depicted in Figure 7, and the training details

are listed in Table 3.

Figure 6 Rough terrain locomotion diagram.

Figure 7 Reward curves for rough terrain locomotion.

 ***, et al. Sci China Tech Sci *** (20**) Vol.* No.*

Table 3 Training Details for Rough Terrain Locomotion

Robot G1 Loong T1 Zqsa01

Simulation

timesteps

(million)

20 20 20 20

Time for

training

(hour)

1.51 1.57 1.30 1.28

(3) Motion Imitation

The motion imitation module facilitates whole-body

motion imitation learning for humanoid robots by

retargeting human motion capture data to robotic joints and

conducting training through instruction learning methods,

enabling the robots to acquire human-like motion patterns.

We have provided some retargeted data for Unitree H1 and

G1 robots, sourced from the AMASS [24] and LEFAN1 [25]

datasets respectively, and pre-trained several motion

sequences including guitar playing, golf swinging, violin

playing, and waving for H1 (using a shared neural network),

as well as Charleston dancing for G1. To use this module,

users can import new motion data, modify targeted motion

to imitate via the inspector window, and enable the Replay

option to visualize motion retargeting animations.

Figure 8 Motion imitation diagram.

We employed a laptop (Intel(R) Core(TM) i9-14900HX

CPU and an NVIDIA GeForce RTX 4080 GPU) for training.

The reward curves are depicted in Figure 9 and Figure 10,

and the training details are listed in Table 4. For H1 robot,

we trained a single neural network for 7 movements (golf,

guitar, tennis, violin, wave both, wave left, wave right) over

12 million steps using curriculum learning. During the

first 10 million steps, we trained each movement for 300

seconds before switching to the next to ensure full practice

of every action; in the last 2 million steps, we reduced each

movement’s training time to 30 seconds (i.e., increased

switching frequency) to effectively mitigate forgetting. For

G1 robot, we trained a long-cycle task—the Charleston

dance—which took 3.43 hours to complete.

Figure 9 Reward curve for H1 imitation task.

Figure 10 Reward curve for G1 imitation task.

Table 4 Training Details for Imitation Learning

Robot H1 G1

Simulation timesteps

(million)
12 35

Time for training

(hour)
1.07 3.43

(4) Sim2Real

Sim2Real serves as a bridge connecting simulation and

physical robots. Leveraging ROS2 For Unity, we developed

an integrated Sim2Real framework and applied it to the

Unitree Go2 robot. ROS2 For Unity provides a

high-performance communication solution that natively

connects the Unity3D engine with the ROS2 ecosystem. To

enable real-time robot-Unity communication, we compiled

ROS2 core functions and Unitree’s ROS packages into

dynamic link libraries (DLLs) callable within Unity,

allowing the creation of ROS nodes in Unity for subscribing

to sensor data from and publishing control commands to the

Go2 robot. We established ROS communication via

Ethernet connection between the robot and computer,

 ****, et al. Sci China Tech Sci *** (20**) Vol.** No.*

achieving state and sensor data alignment between the

simulated and physical robots. This enables identical control

of both simulated and physical robots through Unity, as if

they were the same model. By deploying two identical

pre-trained neural networks—one for the simulated robot

and one for the physical counterpart—we simultaneously

visualized control effects in both environments (see Figure

11). A dedicated control interface was developed: after

program initiation, users click “Stand Up” to raise the robot,

enable feedforward control via the “FF Enable” checkbox

(triggering stepping motion), then activate neural network

control with “NN Enable” for keyboard-based

forward/turning movement, and finally use “Lie Down” to

deactivate the robot. This functionality enables seamless

transfer and rapid validation of trained policies. Moreover,

owing to ROS2’s platform-agnostic design, our approach

can be easily extended to other robotic platforms.

Figure 11 Sim2Real diagram.

(5) Robot Soccer

In the robot soccer module, we implemented a dual-robot

(OpenLoong) combat and soccer system. Adopting a

hierarchical control architecture, the low-level motion

control employs reinforcement learning to enable basic

locomotion (forward movement and steering), while the

high-level strategy utilizes rule-based decision-making: one

robot tracks and kicks the ball, while the other pursues the

kicking robot to initiate combat, delivering punches to

knock it down when within striking distance. Fallen robots

automatically reset to upright positions. This configuration

produces rich adversarial interactions between the robots.

Additionally, the high-level strategy can also be trained via

reinforcement learning using ML-Agents’ MA-POCA

algorithm.

Figure 12 Robot soccer diagram.

(6) Mobile Manipulation

The mobile manipulation module is designed for

humanoid robot operation tasks. Currently, it provides a

foundational keyboard-based control interface, enabling

users to manipulate robot locomotion (walking, stopping,

forward/backward movement, and left/right turning) and

dual-arm end-effector poses with gripper actuation via

computer keystrokes. Locomotion is achieved through

reinforcement learning, while manipulation employs inverse

kinematics (IK). Since Unity lacks built-in IK algorithms,

we developed an innovative solution: we duplicated an

identical robot model for IK computation (referred to as the

IK robot). This replica operates in a low-gain PD control

mode (follower mode), allowing effortless end-effector

positioning akin to manually guiding a robotic arm. By

fixing the IK robot’s torso and connecting both

end-effectors to static objects via fixed joints, we

manipulate the static objects to desired positions, causing

the robotic arm joints to follow accordingly. The resulting

joint angles of this IK robot represent the IK solutions,

which are then applied to the corresponding joints of the

controlled robot, enabling precise end-effector translation

and rotation. This approach successfully validated cube

grasping tasks, demonstrating its effectiveness.

Figure 13 Mobile manipulation diagram.

(7) Autonomous Navigation

The autonomous navigation module leverages Unity’s AI

Navigation package—a game development-oriented

navigation system that enables intelligent path planning and

movement control for in-game characters. This system

allows characters to automatically compute optimal paths

based on environmental obstacles, terrain features, and

other scene information, then navigate to target positions

along these trajectories. When adapted for robotic

applications, we employ AI Navigation to control the

motion of a massless virtual object, with the physical robot

following its movement. We developed a park scenario for

testing and implemented it on a Unitree Go2 robot. Through

mouse-click target selection on the screen, the robot

successfully navigates to designated positions using AI

Navigation-planned routes while avoiding obstacles.

 ***, et al. Sci China Tech Sci *** (20**) Vol.* No.*

Figure 14 Autonomous navigation diagram.

(8) Robot Animation

The robot animation module enables the creation of

realistic robot animations for scenarios where dynamic

simulation is not required. Most video games utilize

animation systems rather than physics-based simulation,

resulting in mature, user-friendly, and highly versatile

animation frameworks.

Figure 15 Robot animation diagram.

To control robots via animation, the critical step is

converting them into skeletal structures. This process is

straightforward in Unity: simply import the robot’s URDF

model, convert it to an FBX file, perform proper skeletal

rigging, and then leverage Unity’s animation tools. By

dragging animation sequences onto the robot’s skeletal

hierarchy, rapid animation implementation becomes

possible. We applied this workflow to the G1 robot,

completing skeletal rigging and producing a concert

performance animation that demonstrates exceptionally

smooth motion effects.

S3 Learning Efficiency of Gewu

Gewu’s core design goal is to build an inclusive embodied

intelligence platform accessible to the general public. While

GPU-based large-scale parallel training significantly

accelerates training speed, it also imposes high hardware

requirements on computers. For instance, IsaacLab

mandates a minimum configuration of GeForce RTX 4080

with 16 GB VRAM, making it hardly accessible to the

general public. In contrast, to develop a universal and

inclusive embodied intelligence platform, Gewu enables

efficient training without relying on a GPU—this advantage

is attributed to the Instruction Learning framework we

adopted.

To evaluate the learning efficiency of Gewu

quantitatively, we compared it with IsaacLab on one

reinforcement learning tasks using the Go2 quadruped

robot—locomotion on flat ground (Go2-Flat), as well as

three reinforcement learning tasks using the G1 humanoid

robot—locomotion on flat ground (G1-Flat), locomotion on

stairs (G1-Rough), and imitation learning

(G1-Dance)—with training conducted on the same laptop

(Intel(R) Core(TM) i9-14900HX CPU, NVIDIA GeForce

RTX 4080 GPU; note: Gewu ran on CPU only, while

IsaacLab used GPU acceleration). The obtained simulation

results can be found in the attached video.

(1) Go2-Flat Task

The Go2-Flat task involves quadruped locomotion with

omnidirectional movement on flat ground. We trained until

the robot could complete the tasks stably. The reward curves

for Gewu and IsaacLab are depicted in Figure 16 and Figure

17, respectively.

Figure 16 Reward curve for Go2-Flat-Gewu task.

Figure 17 Reward curve for Go-Flat-IsaacLab task.

 ****, et al. Sci China Tech Sci *** (20**) Vol.** No.*

(2) G1-Flat Task

The G1-Flat task involves standing and omnidirectional

walking on flat ground. We trained until the robot could

complete the tasks stably. The reward curves for Gewu and

IsaacLab are depicted in Figure 18 and Figure 19,

respectively.

Figure 18 Reward curve for G1-Flat-Gewu task.

Figure 19 Reward curve for G1-Flat-IsaacLab task.

(3) G1-Rough Task

The G1-Rough task involves training the robot to walk

on a rectangular-loop staircase (each step is 15 cm high and

30 cm wide), and we continued the training until the robot

achieved an almost 100% success rate in climbing up and

down the stairs. The reward curves for Gewu and IsaacLab

are depicted in Figure 20 and Figure 21, respectively.

(4) G1-Dance Task

The G1-Dance task involves training the robot to

perform the Charleston dance, and we continued the

training until the robot could stably complete the first 10

seconds of the dance. The reward curves for Gewu and

IsaacLab (using AMP algorithm) are depicted in Figure 22

and Figure 23, respectively.

Figure 20 Reward curve for G1-Rough-Gewu task.

Figure 21 Reward curve for G1-Rough-IsaacLab task.

Figure 22 Reward curve for G1-Dance-Gewu task.

 ***, et al. Sci China Tech Sci *** (20**) Vol.* No.*

Figure 23 Reward curve for G1-Dance-IsaacLab task.

Table 5 summarizes the quantitative comparison between

Gewu and IsaacLab across the three reinforcement learning

tasks. It can be observed that although Gewu has a lower

timesteps per hour compared to IsaacLab, it achieves the

same performance goals (see attached video) with

significantly fewer simulation timesteps. For instance, in the

G1-Flat task, Gewu only needs 5 million simulation

timesteps while IsaacLab requires 100 million; in the

G1-Rough task, Gewu needs 20 million versus IsaacLab’s

300 million; and in the G1-Dance task, Gewu needs 35

million compared to IsaacLab’s 1500 million. This confirms

Gewu’s high “learning efficiency per step” which is a more

meaningful metric for inclusive platforms than raw step

throughput.

Table 5 Training Comparison between Gewu and IsaacLab

RL Task
Simulation
timesteps

(million)

Time for
training

(hour)

Training speed

(million/hour)

Go2-Flat-Gewu 1.2 0.076 16

Go2-Flat-IaacLab 32 0.082 390

G1-Flat-Gewu 5 0.29 17

G1-Flat-IsaacLab 100 0.33 303

G1-Rough-Gewu 20 300 18

G1-Rough-IsaacLab 1.12 1.23 244

G1-Dance-Gewu 35 1500 10

G1-Dance-IsaacLab 3.43 4.20 357

To explore how to make Gewu train faster, we

investigated the impact of increasing the number of parallel

training robots on the training process based on

G1-Flat-Gewu. Seven cases with parallel robot numbers n =

32, 64, 128, 256, 512, 1024, 2048 were considered, each

trained for 5 million steps (using no-graphics mode without

rendering).

Figure 24 Gewu training time for different robot parallel numbers.

Figure 25 Gewu reward curves for different robot parallel numbers.

The training time is shown in Figure 24, and the reward

curves are shown in Figure 25. It can be seen from Figure

24 that the training speed is not faster as n increases; the

training speed is the fastest when n=256, but it is only

13.7% faster than when n=32. In addition, when n increases,

the reward curve tends to deteriorate. For example, the

reward rises much more slowly when n=2048. Therefore, it

is recommended to use a parallel number below 512 for

training.

Regarding GPU support, we acknowledge its importance

for large-scale RL workloads and are actively addressing

this: we have established collaboration with Unity China to

upgrade Unity’s PhysX engine, aiming to enable

GPU-accelerated parallel environment simulation for Gewu.

This upgrade will allow Gewu to leverage GPU resources

(when available) for physics calculation offloading,

projected to increase step throughput by 10–20x while

retaining CPU-only compatibility for accessibility.

 ****, et al. Sci China Tech Sci *** (20**) Vol.** No.*

S4 Domain Randomization

To enhance the robustness of the reinforcement learning

policy and reduce the sim-to-real gap, we have integrated

domain randomization and observation noise into the Gewu

platform. In this section, we will investigate the

performance of Gewu under the conditions of domain

randomization and observation noise.

Taking the Go2-Flat and G1-Flat tasks as examples,

Table 6 lists the details of domain randomization and

observation noise. The training reward curves are shown in

Figs. 26 and 27, and the quantitative indicators of the

training process are presented in Table 7.

As can be seen from Figs. 26 and 27, the reward

decreases slightly after adding domain randomization.

However, this does not indicate a decline in performance.

To evaluate the performance of the trained policy, we tested

the failure case under domain randomization conditions

(conducted 20 runs, 10 seconds per run, with 16 robots, and

recorded the number of fallen robots). As shown in Table 7,

the failure rate of the policy trained with domain

randomization is significantly reduced, demonstrating the

effectiveness of domain randomization in improving

robustness. Additionally, it can be observed from Table 7

that domain randomization has little impact on training time.

For the same number of simulation timesteps, the training

time only increases by around 25%, which verifies the

efficiency of training with domain randomization on the

Gewu platform.

Table 6 Domain Randomization and Observation Noise

Randomized

Factor

Parameter

Variation
Noise

Noise

Level

Friction [0.1, 1.25]
Angular velocity

noise
0.05

Robot Mass [-3.0, 8.0] kg
Gravity

projection noise
0.05

Push

velocity

G1: [1.0,1.5]m/s

Go2: [1.5,3.0]m/s

Joint position

noise
0.01

Push

frequency
Every 3 seconds

Joint velocity

noise
0.075

Figure 26 Go2 reward curve with and without domain randomization.

Figure 27 G1 reward curve with and without domain randomization.

Table 7 Training Comparison for w/ and w/o Domain Randomization

Task

Simulation

timesteps

(million)

Time for

training

(min)

Failure

case

Go2-Flat

(trained without

domain randomization)

1.2 4.5 6

Go2-Flat

(trained with domain

randomization)

1.2 5.7 0

G1-Flat

(trained without

domain randomization)

5 20 91

G1-Flat

(trained with domain

randomization)

5 25 3

S5 Application to Lunar Locomotion Task

When Apollo astronauts first set foot on the Moon, they

discovered that movement and balance became

extraordinarily difficult due to the lunar environment’s

unique physical conditions. This challenge is not exclusive

 ***, et al. Sci China Tech Sci *** (20**) Vol.* No.*

to humans—humanoid robots face equally daunting

obstacles in lunar locomotion. The most critical factor

affecting robotic movement in this environment is the

reduced gravity, which is merely 1/6 of Earth’s, rendering

terrestrial gait patterns ineffective. Consequently, simulating

low-gravity conditions during training is essential for

enabling robots to develop adaptive locomotion strategies.

To address this, we investigated lunar locomotion using the

G1 robot within the Gewu Playground simulation

framework, yielding preliminary insights into effective

movement approaches.

(1) Control Architecture

We employ the control architecture provided by Gewu,

which originates from the instruction learning method we

proposed earlier. Here, we examine it from an alternative

perspective and can regard it as a hybrid neural network, as

illustrated in Figure 28. The upper part of this architecture is

a conventional learnable neural network, whose input is the

robot’s state, and its weights are updated by the

reinforcement learning algorithm during training. The lower

part is a temporal network, with time variables as its input.

It operates as a preset function solely dependent on time,

directly injecting open-loop actions into the robot. These

actions remain frozen and are not updated during training.

The functions of these two networks are complementary,

with the temporal network being interpretable and the state

network being learnable. By integrating these two networks,

efficient learning can be achieved.

For running and jumping, we only employed different

temporal networks, while all other components, including

the reward function, remained exactly the same. For running,

the temporal network is designed to make the robot’s legs

alternate in a periodic stepping motion. For the jumping task,

the temporal network is designed to make the robot’s legs

bend and straighten synchronously in a periodic manner.

We use the same reward
a b vr r r r= + + for both running

and jumping gaits (only difference is the feedforward

signal). Each component of the reward is

1) 1ar = is the alive reward. The robot receives this

reward per time step for not falling.

2) 0.1 0.1b pitch rollr  = − − is the balance reward (unit:

degree), which encourages keeping the body upright.

3) 2v forward vertical lateral yawr v v v v= + − − is the velocity

reward, which encourages the robot to move forward.

Figure 28 The concept of hybrid neural network.

(2) Locomotion Training

We utilize Unity Terrain Editor to construct the lunar

surface terrain, leveraging its powerful functionality that

allows for the intuitive creation and modification of

large-scale terrains through tools like height mapping,

texture painting, and rock placement. Given the unique

characteristics of the lunar surface—such as its cratered

landscape, dramatic undulating terrain with steep slopes and

deep depressions, and uniform regolith texture—the Terrain

Editor enables us to precisely replicate these features by

adjusting elevation details, applying realistic lunar textures,

and simulating lighting conditions to achieve an authentic

lunar environment.

We selected a specific point on the constructed lunar

surface as the starting position for the robot. During training,

we created 24 replicas of the robot, each with a randomly

chosen yaw angle (moving direction) as shown in Figure 29,

which allows the robots to experience as many diverse

ground conditions as possible. Using a simulation time step

of 0.01 seconds, we reset the robots to the starting position

every 10 seconds. We trained the robots for 10 million steps

each on both the running and jumping tasks, with each task

requiring a simulation duration of 27.78 hours, while the

actual training time consumed was only 1.67 hours. The

reward curves are depicted in Figure 30. It can be observed

that the reward for running rises more rapidly and reaches a

higher final value. This may suggest that on the lunar

surface, running enables the robot to move faster and with

greater stability.

 ****, et al. Sci China Tech Sci *** (20**) Vol.** No.*

Figure 29 Locomotion training on simulated lunar surface.

Figure 30 The reward curves.

(3) Performance Evaluation

To evaluate the performance of the derived locomotion

policy, we had two robots perform running and jumping

respectively, and recorded their motion trajectories as

shown in Figure 31. It can be observed that the robot is

capable of jumping to significant heights on the lunar

surface, and its running gait also differs from that on Earth

(which is more evident in the supplementary video). For

quantitative assessment of locomotion performance, we

instructed the robot to move continuously in a straight

direction until it lost balance and fell, recording the

horizontal distance traveled. We selected forward directions

at 30-degree intervals, conducting three trials per direction

and averaging the results. The findings are presented in

Figure 32. As shown, the running policy consistently

outperformed the jumping policy in terms of travel distance

across all directions, indicating that running remains a more

efficient and stable mode of locomotion on the lunar

surface.

Figure 31 Moving trajectory visualization.

Figure 32 Locomotion performance comparison.

S6 Conclusions

This paper introduces Gewu Playground, a versatile,

open-source robot simulation platform built on Unity that

supports a wide range of embodied intelligence research,

including locomotion, manipulation, and autonomous

navigation. Its key innovations include enhanced Sim2Real

capabilities through ROS2 integration, adjustable gravity

fields, and terrain tools for modeling extraterrestrial

environments like lunar and Martian surfaces, enabling

rapid prototyping and experimentation across diverse robot

morphologies. A case study on lunar locomotion

demonstrated its ability to train adaptive movement

strategies for humanoid robots, revealing that running

policies outperformed jumping in stability, providing

valuable insights for future lunar exploration missions.

Gewu Playground represents a significant advancement

by offering a unified, user-friendly framework for both

traditional and learning-based robotic research across

terrestrial and extraterrestrial scenarios, aligning with global

space initiatives. Looking ahead, plans include enhancing

physics modeling, expanding multi-agent simulations, and

improving cross-platform compatibility, while fostering a

 ***, et al. Sci China Tech Sci *** (20**) Vol.* No.*

vibrant research community through comprehensive

documentation and resources. By lowering technical

barriers, Gewu Playground aims to empower a broader

range of researchers to contribute to the next generation of

intelligent robotic systems for Earth and beyond.

This work was supported by the Shanghai “Science and Technology

Innovation Action Plan” Next-Generation Information Technology Domain

Key Technology Breakthrough Program (Grant No. 24511103304).

1 Michel, O. (2004). Cyberbotics ltd. Webots™: professional mobile

robot simulation. International Journal of Advanced Robotic Systems,

1(1), 5.

2 Koenig, N., & Howard, A. (2004, September). Design and use

paradigms for gazebo, an open-source multi-robot simulator. In 2004

IEEE/RSJ international conference on intelligent robots and systems

(IROS) (Vol. 3, pp. 2149-2154). IEEE.

3 Rohmer, E., Singh, S. P., & Freese, M. (2013, November). V-REP: A

versatile and scalable robot simulation framework. In 2013 IEEE/RSJ

international conference on intelligent robots and systems (pp.

1321-1326). IEEE.

4 Collins, J., Chand, S., Vanderkop, A., & Howard, D. (2021). A review

of physics simulators for robotic applications. IEEE Access, 9,

51416-51431.

5 Pitonakova, L., Giuliani, M., Pipe, A., & Winfield, A. (2018, July).

Feature and performance comparison of the V-REP, Gazebo and

ARGoS robot simulators. In Annual Conference Towards

Autonomous Robotic Systems (pp. 357-368). Cham: Springer

International Publishing.

6 Miki, T., Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., & Hutter,

M. (2022). Learning robust perceptive locomotion for quadrupedal

robots in the wild. Science robotics, 7(62), eabk2822.

7 Vollenweider, E., Bjelonic, M., Klemm, V., Rudin, N., Lee, J., &

Hutter, M. (2022). Advanced skills through multiple adversarial

motion priors in reinforcement learning. arXiv preprint

arXiv:2203.14912.

8 Hoeller, D., Rudin, N., Sako, D., & Hutter, M. (2024). Anymal

parkour: Learning agile navigation for quadrupedal robots. Science

Robotics, 9(88), eadi7566.

9 Liu, Y., Chen, W., Bai, Y., Liang, X., Li, G., Gao, W., & Lin, L.

(2024). Aligning cyber space with physical world: A comprehensive

survey on embodied AI. arXiv preprint arXiv:2407.06886.

10 Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J.,

Tang, J., & Zaremba, W. (2016). OpenAI gym. arXiv preprint

arXiv:1606.01540.

11 James, S., Freese, M., & Davison, A. J. (2019). Pyrep: Bringing v-rep

to deep robot learning. arXiv preprint arXiv:1906.11176.

12 Rudin, N., Hoeller, D., Reist, P., & Hutter, M. (2022, January).

Learning to walk in minutes using massively parallel deep

reinforcement learning. In Conference on robot learning (pp. 91-100).

PMLR.

13 Gu, X., Wang, Y. J., & Chen, J. (2024). Humanoid-gym:

Reinforcement learning for humanoid robot with zero-shot sim2real

transfer. arXiv preprint arXiv:2404.05695.

14 Mittal, M., Yu, C., Yu, Q., Liu, J., Rudin, N., Hoeller, D., ... & Garg,

A. (2023). Orbit: A unified simulation framework for interactive

robot learning environments. IEEE Robotics and Automation

Letters, 8(6), 3740-3747.

15 Zakka, K., Tabanpour, B., Liao, Q., Haiderbhai, M., Holt, S., Luo, J.

Y., ... & Abbeel, P. (2025). Mujoco playground. arXiv preprint

arXiv:2502.08844.

16 Todorov, E., Erez, T., & Tassa, Y. (2012, October). Mujoco: A physics

engine for model-based control. In 2012 IEEE/RSJ international

conference on intelligent robots and systems (pp. 5026-5033). IEEE.

17 Zhou, X., Qiao, Y., Xu, Z., et al., Genesis: A Generative and

Universal Physics Engine for Robotics and Beyond,

https://genesis-embodied-ai.github.io/.

18 Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L., Herrasti,

A., ... & Farhadi, A. (2017). Ai2-thor: An interactive 3d environment

for visual ai. arXiv preprint arXiv:1712.05474.

19 Juliani, A., Berges, V. P., Teng, E., Cohen, A., Harper, J., Elion, C., ...

& Lange, D. (2018). Unity: A general platform for intelligent agents.

arXiv preprint arXiv:1809.02627.

20 Ye, L., Li, R., Hu, X., Li, J., Xing, B., Peng, Y., & Liang, B. (2025).

Unity RL Playground: A Versatile Reinforcement Learning

Framework for Mobile Robots. arXiv preprint arXiv:2503.05146.

21 Kolvenbach, H., Hampp, E., Barton, P., Zenkl, R., & Hutter, M.

(2019, November). Towards jumping locomotion for quadruped

robots on the moon. In 2019 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) (pp. 5459-5466). IEEE.

22 Kolvenbach, H., Bellicoso, D., Jenelten, F., Wellhausen, L., & Hutter,

M. (2018, June). Efficient gait selection for quadrupedal robots on the

moon and mars. In 14th International Symposium on Artificial

Intelligence, Robotics and Automation in Space (i-SAIRAS 2018).

ESA Conference Bureau.

23 Ye, L., Li, J., Cheng, Y., Wang, X., Liang, B., & Peng, Y. (2023).

From knowing to doing: learning diverse motor skills through

instruction learning. arXiv preprint arXiv:2309.09167.

24 Mahmood, N., Ghorbani, N., Troje, N. F., Pons-Moll, G., & Black, M.

J. (2019). AMASS: Archive of motion capture as surface shapes. In

Proceedings of the IEEE/CVF international conference on computer

vision (pp. 5442-5451).

25 https://huggingface.co/datasets/lvhaidong/LAFAN1_Retargeting_Dat

aset

https://huggingface.co/datasets/lvhaidong/LAFAN1_Retargeting_Dataset
https://huggingface.co/datasets/lvhaidong/LAFAN1_Retargeting_Dataset

	Gewu - letter
	Gewu - Suplementary File

