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Embodied intelligence, which integrates robotics and
artificial intelligence, relies heavily on simulation platforms
to develop adaptive behaviors through perception, cognition,
and action. Traditional robotic simulation tools such as
Webots [1], Gazebo [2], and V-REP [3] have significantly
contributed to the field by supporting kinematic and
dynamic model-based research. However, the advent of
learning-based methods, particularly reinforcement learning
(RL), has created a demand for platforms specifically
designed to facilitate these approaches, with IsaacLab [4],
MuJoCo Playground [5], and Genesis emerging as key
solutions. IsaacLab provides a high-fidelity NVIDIA
simulation toolkit with photorealistic rendering, supporting
multi-modal robotic platforms via a unified API for
seamless reinforcement learning algorithm integration;
MulJoCo Playground leverages the MuJoCo physics engine
for rapid sim2real policy iteration, featuring on-device
rendering, domain randomization, and pre-built benchmarks
across quadrupeds, humanoids, and dexterous manipulators;
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while Genesis employs data-driven generative physics
modeling to create dynamic simulation environments for
manipulation and locomotion tasks, enabling on-the-fly
scenario generation for scalable experimentation.

Unity, primarily known as a game engine, has emerged
as a powerful tool for embodied Al research, offering
frameworks like AI2-Thor [6] and Unity ML-Agents Toolkit
[7] that provide intuitive environments for training
intelligent agents. Unity offers unique advantages for
embodied intelligence research by  providing
near-photorealistic rendering and multi-modal inputs for
perception tasks, integrating advanced physics engines for
dynamic interactions like deformable objects, and enabling
hierarchical tasks and multi-agent collaboration through C#
scripting—features that surpass MuJoCo’s limited state
inputs and lack of multi-agent support, as well as IsaacSim’s
focus on robotic fleets over sensory and dynamic
environment flexibility.
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Built on Unity, we introduce Gewu Playground
(https://github.com/loongOpen/Unity-RL-Playground/), a
comprehensive, open-source robot simulation platform that
supports a wide range of embodied intelligence tasks. Gewu
Playground extends the capabilities of Unity RL Playground
[8], offering enhanced features for locomotion,
manipulation, and navigation tasks. It is designed to
facilitate rapid prototyping, accommodate diverse robot
types, and enable seamless sim2real transfer via ROS2
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integration. Core to Gewu Playground are three innovations
addressing key embodied intelligence challenges: an
efficient instruction learning-based RL framework; low-cost
hardware requirements enabling efficient CPU-based
training accessible to broader researchers; and deep
integration with Unity’s ecosystem to leverage its
high-quality simulation capabilities, including photorealistic
multi-modal rendering, flexible physics (rigid/soft-body,
fluid dynamics), and modular scripting.
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Figure 1 Gewu Playground Introduction.


https://github.com/loongOpen/Unity-RL-Playground/

X%

Gewu Playground integrates eight specialized modules
(Fig. 1a): universal locomotion, uneven terrain locomotion,
motion imitation, Sim2Real transfer, robot soccer, mobile
manipulation, autonomous navigation, and robot animation.
Each module provides guided examples and supports the
import of custom robot models with minimal configuration
overhead, ensuring accessibility across diverse research
applications.

The platform leverages Unity’s modular ecosystem,
utilizing the URDF Importer package to seamlessly convert
Unified Robot Description Format (URDF) models into
Unity’s ArticulationBody components for high-fidelity
physics simulation. For reinforcement learning, Gewu
Playground employs the ML-Agents toolkit, which supports
Proximal Policy Optimization (PPO), Soft Actor-Critic
(SAC), as well as Multi-Agent Policy Optimization with
Credit Assignment (MA-POCA) algorithms, ensuring robust
policy optimization across various robotic tasks.

Gewu aims to be an inclusive embodied intelligence
platform accessible to all. A key feature of Gewu
Playground is its high learning efficiency achieved through
Instruction Learning [9]. Unlike IsaacLab, which needs
high-end GPUs like GeForce RTX 4080, Gewu can train
efficiently on CPUs, achieving equal-level results with far
fewer simulation timesteps (Fig. 1b). This shows its high
“learning efficiency per step”. While recognizing GPUs’
value for large-scale tasks, Gewu is collaborating with
Unity China to upgrade the PhysX engine for
GPU-accelerated parallel simulation, which will boost step
throughput 10-20x while still supporting CPU-only use.

The platform’ high-quality simulation features and terrain
construction tools make it an ideal environment for training
robots for extraterrestrial exploration, such as lunar or
Martian missions. To demonstrate Gewu Playground’s
capabilities, we investigated locomotion strategies for
humanoid robots under lunar low-gravity conditions (Fig.
1c). The lunar environment’s unique physical characteristics,
particularly its reduced gravity (1/6 of Earth’s), pose
significant challenges for robotic movement and balance.
Simulating these conditions during training is essential for
enabling robots to develop adaptive locomotion strategies.

Using the Unitree G1 robot within Gewu Playground, we
trained two efficient locomotion patterns: running and
jumping. The control architecture employed a hybrid neural
network, combining a conventional learnable neural
network with a temporal network that injects open-loop
actions based on time variables. This architecture allowed
for efficient learning and the development of stable
locomotion policies.

The lunar surface terrain was constructed using Unity
Terrain Editor, which enabled precise replication of the
Moon’s cratered landscape and undulating terrain. Training
involved creating multiple replicas of the robot, each with a
randomly chosen yaw angle, to experience diverse ground
conditions. The robots were trained for 10 million steps
each on running and jumping tasks, achieving stable and
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efficient locomotion policies.

Performance evaluation revealed that the running policy
consistently outperformed the jumping policy in terms of
travel distance and stability. These findings provide
valuable insights for future robotic lunar exploration
missions, demonstrating Gewu Playground’s ability to train
adaptive movement strategies for humanoid robots in
extraterrestrial environments.

Gewu Playground represents a significant advancement
in robot simulation platforms, offering a unified,
user-friendly framework for embodied intelligence research.
Its key innovations include universally efficient
reinforcement learning framework, ease of use with low
hardware requirements, and seamless integration with
Unity’s rich ecosystem. The platform supports a wide range
of tasks, including locomotion, manipulation, and
navigation, making it suitable for both traditional and
learning-based robotic research.

By lowering technical barriers, Gewu Playground
empowers a broader range of researchers to contribute to
the next generation of intelligent robotic systems. Its future
plans include enabling GPU-accelerated training, adapting
to more physical robot models, and expanding embodied
intelligence applications. With its versatile learning
architecture, Gewu Playground is poised to accelerate the
transition from laboratory prototypes to interplanctary
robotic systems, aligning with global space initiatives.

This work was supported by the Shanghai “Science and Technology
Innovation Action Plan” Next-Generation Information Technology Domain
Key Technology Breakthrough Program (Grant No. 24511103304).
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S1 Introduction

Embodied intelligence represents the combination of
robotics and artificial intelligence, where simulation
platforms provide the essential infrastructure for robots to
develop adaptive behaviors through integrated perception,
cognition, and action—bridging the gap between virtual
training and real-world deployment.

The evolution of robotics has been inextricably linked to
simulation platforms, with a series of influential and widely
adopted tools emerging since the 1990s. Notable examples
include: Webots (1998) [1]: Developed by the Cyberbotics
company, renowned for its physics-accurate rendering and
cross-platform compatibility; Gazebo (2004) [2]: Rapidly
gained prominence through ROS integration; V-REP (2013,
now CoppeliaSim) [3]: Featuring a modular architecture
that supports multiple physics engines concurrently. Those
robotic simulation platforms reveals distinct functional
paradigms: Webots prioritizes perceptual fidelity with
photorealistic rendering and standardized robot models,
facilitating perception-driven navigation research; Gazebo
dominates open-source academic research via its scalable
plugin ecosystem, ROS-native integration, and support for
large-scale multi-agent simulations, as evidenced by its
widespread adoption in DARPA Robotics Challenge; while
V-REP (CoppeliaSim) excels in modular versatility,
supporting multiple physics engines and rendering modes
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through its distributed architecture, making it ideal for
industrial manipulation prototyping. These platforms
collectively address the fidelity-performance tradeoff and
usability-flexibility balance, reflecting evolving efforts to
bridge simulation-to-reality gaps through enhanced physics
modeling and sensor simulation, as underscored by recent
comparative studies [4,5].

While the aforementioned simulation platforms have
achieved remarkable success in traditional robotic control
field by primarily supporting algorithm development based
on kinematic and dynamic models, recent years have
witnessed a paradigm shift: model-based approaches are
being increasingly superseded by learning-based methods,
with reinforcement learning [6-8] emerging as the dominant
framework for robotic control. To better accommodate the
demands of robotic reinforcement learning, a proliferation
of novel simulation platforms has emerged in recent years
[9].

OpenAl Gym [10], a foundational framework for
reinforcement learning algorithm development, provides
standardized environments for benchmarking control
policies, including classical robotic tasks like CartPole and
MountainCar, and has been extended to robotics via the
Roboschool and PyBullet integrations. PyRep [11], built
atop V-REP, bridges the gap between traditional robotic
simulation and deep learning by offering a Python API for
rapid scene construction, domain randomization, and
real-time sensor simulation, enabling end-to-end training of
vision-based manipulation policies. Legged Gym [12]
specializes in legged robotics, offering GPU-accelerated
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physics simulations to efficiently train locomotion policies
across diverse robot morphologies and terrains, with
emphasis on rapid experimentation and sim2real
deployment. Humanoid-Gym [13], built on NVIDIA Isaac
Gym, focuses on humanoid robot locomotion through
zero-shot  sim2real transfer, incorporating domain
randomization and advanced reward shaping for policy
robustness. IsaacLab [14] provides a high-fidelity NVIDIA
simulation toolkit with photorealistic rendering, supporting
multi-modal robotic platforms via a unified API for
seamless reinforcement learning algorithm integration.
MuJoCo Playground [15] leverages the MuJoCo physics
engine [16] for rapid sim2real policy iteration, featuring
on-device rendering, domain randomization, and pre-built
benchmarks across quadrupeds, humanoids, and dexterous
manipulators. Finally, Genesis [17] employs data-driven
generative physics modeling to create dynamic simulation
environments for manipulation and locomotion tasks,
enabling on-the-fly scenario generation for scalable
experimentation.

Besides, Unity is primarily known as a game engine, has
emerged as a powerful platform for Embodied Al research,
enabling the development of interactive 3D environments
for robot learning. Notable frameworks built on Unity
include AI2-Thor [18], which provides photorealistic indoor
scenes for visual navigation tasks, and Unity ML-Agents
Toolkit [19], which provides a user-friendly and versatile
framework for the training of intelligent agents through
reinforcement learning. Unity ML-Agents is designed to be
intuitive and easy to use, with a focus on rapid development
of games.

Table 1 Comparative Summary: Unity vs. MuJoCo/IsaacSim

Sci China Tech Sci

Feature Unity MuJoCo IsaacSim
Sensory Multl-mo_d a.l’ Low-dimension GPU-rendered but
Simulation photorea.hstlc state inputs only | physics-prioritized
rendering
Rigid/soft-bod Excellent
Physical y + real-time rigid-body GPU-accelerated
Dynamics object (fixed models (fleet-focused)
spawning only)
Task/Multi Hlerarchlc_al Single-task (no Robo_tlcicontrol
—agent tasks + native multi-agent) (limited
& networking g customization)

Unlike pure robotic control, embodied RL requires
multi-dimensional environmental complexity (sensory,
physical, task-logic, social) to bridge the reality gap—an
area where Unity has particular advantages, as shown in
Table 1. First, Unity supports near-photorealistic rendering
(dynamic lighting, custom shaders) and multi-modal inputs
(depth maps, LiDAR emulation), critical for
pixel-level/multi-modal perception tasks. In contrast,
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MulJoCo focuses on low-dimensional state inputs, while
IsaacSim prioritizes physics over sensory flexibility. Second,
Unity integrates industry-leading physics engines (NVIDIA
PhysX, Havok), enabling rigid-body, soft-body, and fluid
dynamics—supporting ~ dynamic  interactions  (e.g.,
deformable objects, real-time obstacle spawning). MuJoCo
lacks flexible object instantiation, and IsaacSim is
optimized for large robotic fleets but not dynamic
environment design. Third, Unity’s C# scripting enables
hierarchical tasks and multi-agent collaboration via built-in
networking. MuJoCo has no multi-agent support, and
IsaacSim limits interactions to agent-robot scenarios.

Based upon Unity, we developed Unity RL Playground
[20], a dedicated reinforcement learning framework for
mobile robots. It is designed to be operated with minimal
programming expertise, allowing users to easily import their
custom robot models for comprehensive multi-modal
motion training. However, Unity RL Playground was
originally designed for locomotion tasks of mobile robots,
restricting its applicability to broader embodied intelligence
tasks. To address this, we developed the Gewu Playground
as an enhanced extension of Unity RL Playground,
transforming it into a comprehensive research platform for
embodied intelligence with multi-domain task support.

|

(a) Indoor near-photorealistic rendering

(c) Rigid-body and soft-body interaction

(d) Rigid-body and fluid interaction

Figure 1 Gewu high-quality simulation capabilities.

Gewu Playground integrates three core innovations to
address key challenges in embodied intelligence research:
first, an efficient reinforcement learning framework built on
the instruction learning paradigm, which achieves high
“learning efficiency per step” by synergizing feedforward
action primitives with RL-based stabilization, enabling
rapid policy convergence even for complex tasks; second,
low-cost hardware requirements that eliminate dependency
on high-end GPUs—training can be completed efficiently
on standard CPUs, making embodied intelligence research
accessible to a broader audience; third, deep integration
with Unity’s ecosystem and access to its high-quality
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simulation capabilities (see Figure 1), leveraging its
photorealistic multi-modal rendering, flexible physics
simulation (rigid-body, soft-body, fluid dynamics), and
modular scripting to support diverse task scenarios from
terrestrial manipulation to extraterrestrial locomotion.

In the coming era, embodied intelligence will transcend
terrestrial boundaries—not only reshaping our daily life
through intelligent agents but also spearheading humanity’s
expansion into space, as evidenced by China’s 2035 vision
for the International Lunar Research Station and SpaceX’s
Mars Base Alpha initiative. This cosmic frontier poses
unprecedented challenges for robotic exploration: the lunar
and Martian gravities—merely 1/6 and 3/8 of
Earth’s—combined with unique terrains demand radical
rethinking of locomotion control. Previous research has
primarily focused on quadrupedal robot locomotion on the
Moon and Mars [21,22], while studies involving humanoid
robots remain scarce. Addressing these extraterrestrial
constraints, Gewu Playground emerges as a universal
simulation infrastructure that enables cross-planetary
dynamics modeling via adjustable gravity fields and terrain
construction supports. By bridging the sim2real gap for both
terrestrial and  extraterrestrial environments, Gewu
Playground establishes itself as a critical enabler for
space-ready embodied intelligence, accelerating the
transition from laboratory prototypes to interplanctary
robotic systems.

The contributions of this paper are as follows. First, we
develop the framework of Gewu Playground. Compared to
Unity RL Playground, Gewu Playground has undergone a
comprehensive upgrade, not only expanding locomotion
tasks to include complex terrain adaptation and whole-body
imitation learning but also introducing new modules
including imitation learning, manipulation, and navigation.
Furthermore, it  integrates ROS2 to  enable
higher-performance and more universal sim2real transfer
capabilities. Second, leveraging the Gewu Playground
framework, we investigated locomotion strategies for
humanoid robots under lunar low-gravity conditions,
successfully  training  two  efficient  locomotion
patterns—running and jumping—which were validated
through simulation on virtual lunar terrain. These findings
provide critical technical support for future robotic lunar
exploration missions.

S2  Gewu Playground Framework

Gewu Playground framework is shown in Figure 2.
Leveraging Unity’s modular ecosystem, we streamline
robotic system integration through the URDF Importer
package, which enables seamless conversion of Unified
Robot Description Format (URDF) models into Unity’s
ArticulationBody components—optimized for high-fidelity
physics simulation via the PhysX engine. For reinforcement
learning implementation, we utilize the ML-Agents toolkit,
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which  provides PyTorch-backed training pipelines
supporting Proximal Policy Optimization (PPO), Soft
Actor-Critic (SAC) algorithms, and Multi-Agent Policy
Optimization with Credit Assignment (MA-POCA),
ensuring policy optimization across diverse robotic tasks.

URDF RL framework :
Importer (Instruction Learning) focomation
N Sim2Real
Scene RL algorithm : g
Manager (Unity ML-Agents) Manipulation (Rlcj):izt;;)r
Unity Physics engine —
Shader (Nvidia PhysX) Navigation

Figure 2 Gewu Playground framework.

Gewu Playground currently integrates eight specialized
modules—universal locomotion, uneven terrain locomotion,
motion imitation, Sim2Real transfer, robot soccer, mobile
manipulation, autonomous navigation, and robot
animation—where the first three modules form the
foundational reinforcement learning training infrastructure
for developing core robotic motor skills, enabling
subsequent adaptation to complex tasks; each module
includes guided examples demonstrating its functionality,
and recognizing the need for custom hardware integration,
we provide an intuitive template for importing and training
user-defined robotic models with minimal configuration
overhead, ensuring seamless accessibility across diverse
research applications.

(1) Universal Locomotion

This module facilitates foundational locomotion training
for diverse robotic morphologies, including bipedal,
quadrupedal, biped-wheeled hybrid, and
quadruped-wheeled hybrid systems. As presented in Figure
3, we have tested over 80 different robots using Gewu
Playground.

Figure 3 Diverse robot support of Gewu playground.

For each configuration, we provide three distinct motion
control modes implemented via an instruction learning [23]
paradigm that synergizes feedforward action primitives with
reinforcement learning-based stabilization. To streamline
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user interaction, we developed a dedicated setup interface
within Unity’s Inspector panel (Figure 4, right), enabling
intuitive specification of robot type and target motion
patterns during URDF model import. The training workflow
is further optimized through a “Fixbody” validation toggle,
allowing users to pre-verify feedforward action correctness
before training. For computational efficiency, the system
automatically spawns 32 parallel robot instances during
training, achieving 20x real-time simulation acceleration
while maintaining physics fidelity through Unity’s

deterministic PhysX integration. It should be noted that
GPU-based parallel training is currently not supported;
however, the training speed remains highly efficient,
depending primarily on CPU performance. Even with a
standard laptop, training can typically be completed within
tens of minutes to a few hours.

Figure 4 Universal locomotion diagram.
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Figure 5 Reward curves for universal locomotion.
Table 2 Training Details for Universal Locomotion
Tronl- Gl- Go2- Go2w Loong  X02-
Robot :
walk walk trot -walk -run jump
Simulation
timesteps 4 2 1 1 3 2
(million)
Time for
training 0.31 0.19 0.10 0.10 0.33 0.17
(hour)
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We employed a laptop (Intel(R) Core(TM) i9-14900HX
CPU and an NVIDIA GeForce RTX 4080 GPU) for training.
The reward curve is depicted in Figure 5, and the training
details are listed in Table 2. It can be observed that all six
locomotion tasks can be trained and completed within a
very short time (1 to 4 million timesteps, spanning 0.1 to 0.3
hours).

(2) Rough Terrain Locomotion

To train complex terrain locomotion capabilities, we
developed a pyramid staircase environment incorporating
both convex (upward) and concave (downward) stairs. The
neural network architecture remained identical to prior
implementations, with the key innovation being the
adoption of a terrain-adaptive curriculum learning strategy.
During training, we progressively increased step heights
from 5 cm to 10 cm, and subsequently to 15 cm, to
systematically enhance environmental complexity. Four
humanoid robots with distinct structural designs and
physical dimensions were selected for training, all of which
ultimately demonstrated proficient stair climbing and
descending abilities.

We employed a laptop (Intel(R) Core(TM) i9-14900HX
CPU and an NVIDIA GeForce RTX 4080 GPU) for training.
For the four robots, we trained each for 20 million timesteps,
and the time taken ranged from 1.28 to 1.57 hours. The
reward curve is depicted in Figure 7, and the training details
are listed in Table 3.

ﬁbiome
I DU ——
VYaY '

A

-
7 T 5 — w)

Figure 6 Rough terrain locomotion diagram.

—GI1 —Loong

T1 —Zqsa0l

Timesteps (million)

Figure 7 Reward curves for rough terrain locomotion.
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Table 3 Training Details for Rough Terrain Locomotion

Robot Gl Loong T1 Zqsa0l

Simulation
timesteps 20 20 20 20
(million)

Time for
training 1.51 1.57 1.30 1.28
(hour)

(3) Motion Imitation

The motion imitation module facilitates whole-body
motion imitation learning for humanoid robots by
retargeting human motion capture data to robotic joints and
conducting training through instruction learning methods,
enabling the robots to acquire human-like motion patterns.
We have provided some retargeted data for Unitree H1 and
G1 robots, sourced from the AMASS [24] and LEFAN1 [25]
datasets respectively, and pre-trained several motion

sequences including guitar playing, golf swinging, violin
playing, and waving for H1 (using a shared neural network),
as well as Charleston dancing for G1. To use this module,
users can import new motion data, modify targeted motion
to imitate via the inspector window, and enable the Replay
option to visualize motion retargeting animations.

Figure 8 Motion imitation diagram.

We employed a laptop (Intel(R) Core(TM) 19-14900HX
CPU and an NVIDIA GeForce RTX 4080 GPU) for training.
The reward curves are depicted in Figure 9 and Figure 10,
and the training details are listed in Table 4. For H1 robot,
we trained a single neural network for 7 movements (golf,
guitar, tennis, violin, wave both, wave left, wave right) over
12 million steps using curriculum learning. During the
first 10 million steps, we trained each movement for 300
seconds before switching to the next to ensure full practice
of every action; in the last 2 million steps, we reduced each
movement’s training time to 30 seconds (i.e., increased
switching frequency) to effectively mitigate forgetting. For
G1 robot, we trained a long-cycle task—the Charleston
dance—which took 3.43 hours to complete.

Sci China Tech Sci
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Figure 9 Reward curve for H1 imitation task.

0 5 10 15 20 25 30 35
Timesteps (million)

Figure 10 Reward curve for G1 imitation task.

Table 4 Training Details for Imitation Learning

Robot H1 Gl

Simulation timesteps
(million) 12 3
Time for training

(hour) 1.07 3.43

(4) Sim2Real

Sim2Real serves as a bridge connecting simulation and
physical robots. Leveraging ROS2 For Unity, we developed
an integrated Sim2Real framework and applied it to the
Unitree Go2 robot. ROS2 For Unity provides a
high-performance communication solution that natively
connects the Unity3D engine with the ROS2 ecosystem. To
enable real-time robot-Unity communication, we compiled
ROS2 core functions and Unitree’s ROS packages into
dynamic link libraries (DLLs) callable within Unity,
allowing the creation of ROS nodes in Unity for subscribing
to sensor data from and publishing control commands to the
Go2 robot. We established ROS communication via
Ethernet connection between the robot and computer,
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achieving state and sensor data alignment between the
simulated and physical robots. This enables identical control
of both simulated and physical robots through Unity, as if
they were the same model. By deploying two identical
pre-trained neural networks—one for the simulated robot
and one for the physical counterpart—we simultaneously
visualized control effects in both environments (see Figure
11). A dedicated control interface was developed: after
program initiation, users click “Stand Up” to raise the robot,
enable feedforward control via the “FF Enable” checkbox
(triggering stepping motion), then activate neural network
control with “NN  Enable” for keyboard-based
forward/turning movement, and finally use “Lie Down” to
deactivate the robot. This functionality enables seamless
transfer and rapid validation of trained policies. Moreover,
owing to ROS2’s platform-agnostic design, our approach
can be easily extended to other robotic platforms.

Figure 11

Sim2Real diagram.

(5) Robot Soccer

In the robot soccer module, we implemented a dual-robot
(OpenLoong) combat and soccer system. Adopting a
hierarchical control architecture, the low-level motion
control employs reinforcement learning to enable basic
locomotion (forward movement and steering), while the
high-level strategy utilizes rule-based decision-making: one
robot tracks and kicks the ball, while the other pursues the
kicking robot to initiate combat, delivering punches to
knock it down when within striking distance. Fallen robots
automatically reset to upright positions. This configuration
produces rich adversarial interactions between the robots.
Additionally, the high-level strategy can also be trained via
reinforcement learning using ML-Agents’ MA-POCA
algorithm.

Figure 12 Robot soccer diagram.
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(6) Mobile Manipulation

The mobile manipulation module is designed for
humanoid robot operation tasks. Currently, it provides a
foundational keyboard-based control interface, enabling
users to manipulate robot locomotion (walking, stopping,
forward/backward movement, and left/right turning) and
dual-arm end-effector poses with gripper actuation via
computer keystrokes. Locomotion is achieved through
reinforcement learning, while manipulation employs inverse
kinematics (IK). Since Unity lacks built-in IK algorithms,
we developed an innovative solution: we duplicated an
identical robot model for IK computation (referred to as the
IK robot). This replica operates in a low-gain PD control
mode (follower mode), allowing effortless end-effector
positioning akin to manually guiding a robotic arm. By
fixing the IK robot’s torso and connecting both
end-effectors to static objects via fixed joints, we
manipulate the static objects to desired positions, causing
the robotic arm joints to follow accordingly. The resulting
joint angles of this IK robot represent the IK solutions,
which are then applied to the corresponding joints of the
controlled robot, enabling precise end-effector translation
and rotation. This approach successfully validated cube
grasping tasks, demonstrating its effectiveness.
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Figure 13 Mobile manipulation diagram.

(7) Autonomous Navigation

The autonomous navigation module leverages Unity’s Al
Navigation package—a game development-oriented
navigation system that enables intelligent path planning and
movement control for in-game characters. This system
allows characters to automatically compute optimal paths
based on environmental obstacles, terrain features, and
other scene information, then navigate to target positions
along these trajectories. When adapted for robotic
applications, we employ Al Navigation to control the
motion of a massless virtual object, with the physical robot
following its movement. We developed a park scenario for
testing and implemented it on a Unitree Go2 robot. Through
mouse-click target selection on the screen, the robot
successfully navigates to designated positions using Al
Navigation-planned routes while avoiding obstacles.
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Figure 14 Autonomous navigation diagram.

(8) Robot Animation

The robot animation module enables the creation of
realistic robot animations for scenarios where dynamic
simulation is not required. Most video games utilize
animation systems rather than physics-based simulation,
resulting in mature, user-friendly, and highly versatile
animation frameworks.

Figure 15 Robot animation diagram.

To control robots via animation, the critical step is
converting them into skeletal structures. This process is
straightforward in Unity: simply import the robot’s URDF
model, convert it to an FBX file, perform proper skeletal
rigging, and then leverage Unity’s animation tools. By
dragging animation sequences onto the robot’s skeletal
hierarchy, rapid animation implementation becomes
possible. We applied this workflow to the GI robot,
completing skeletal rigging and producing a concert
performance animation that demonstrates exceptionally
smooth motion effects.

S3 Learning Efficiency of Gewu

Gewu’s core design goal is to build an inclusive embodied
intelligence platform accessible to the general public. While
GPU-based large-scale parallel training significantly
accelerates training speed, it also imposes high hardware
requirements on computers. For instance, IsaacLab

Sci China Tech Sci

#*#¥% (20%*) Vol.* No.*

mandates a minimum configuration of GeForce RTX 4080
with 16 GB VRAM, making it hardly accessible to the
general public. In contrast, to develop a universal and
inclusive embodied intelligence platform, Gewu enables
efficient training without relying on a GPU—this advantage
is attributed to the Instruction Learning framework we
adopted.

To evaluate the Ilearning efficiency of Gewu
quantitatively, we compared it with IsaacLab on one
reinforcement learning tasks using the Go2 quadruped
robot—locomotion on flat ground (Go2-Flat), as well as
three reinforcement learning tasks using the G1 humanoid
robot—locomotion on flat ground (G1-Flat), locomotion on
stairs (G1-Rough), and imitation learning
(G1-Dance)—with training conducted on the same laptop
(Intel(R) Core(TM) 19-14900HX CPU, NVIDIA GeForce
RTX 4080 GPU; note: Gewu ran on CPU only, while
IsaacLab used GPU acceleration). The obtained simulation
results can be found in the attached video.

(1) Go2-Flat Task

The Go2-Flat task involves quadruped locomotion with
omnidirectional movement on flat ground. We trained until
the robot could complete the tasks stably. The reward curves
for Gewu and IsaacLab are depicted in Figure 16 and Figure
17, respectively.

1000
900
800
700
600
500
400
300
200
100

0
0.2 0.4 0.6 0.8 1 1.2
Timesteps (million)

Reward

Figure 16 Reward curve for Go2-Flat-Gewu task.
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Figure 17 Reward curve for Go-Flat-IsaacLab task.
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(2) G1-Flat Task 2500
The G1-Flat task involves standing and omnidirectional 2000
walking on flat ground. We trained until the robot could
complete the tasks stably. The reward curves for Gewu and 1500
IsaacLab are depicted in Figure 18 and Figure 19, s
respectively. Z 1000
2500 &
500
2000
0
1500
° -500
g 1000 0 5 _ 0 15 20
& Timesteps (million)
500
Figure 20 Reward curve for G1-Rough-Gewu task.
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Figure 18 Reward curve for G1-Flat-Gewu task. 15
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0 Figure 21 Reward curve for G1-Rough-IsaacLab task.
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Figure 19 Reward curve for G1-Flat-IsaacLab task. 500
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(3) G1-Rough Task ® 00
The G1-Rough task involves training the robot to walk 200
on a rectangular-loop staircase (each step is 15 cm high and
30 cm wide), and we continued the training until the robot 100
achieved an almost 100% success rate in climbing up and 0
down the stairs. The reward curves for Gewu and IsaacLab 0 > 10 Tim‘lazteps (mizl?ion) 3 30 33
are depicted in Figure 20 and Figure 21, respectively.
(4) G1-Dance Task Figure 22 Reward curve for G1-Dance-Gewu task.

The Gl-Dance task involves training the robot to
perform the Charleston dance, and we continued the
training until the robot could stably complete the first 10
seconds of the dance. The reward curves for Gewu and
IsaacLab (using AMP algorithm) are depicted in Figure 22
and Figure 23, respectively.
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Figure 23 Reward curve for G1-Dance-IsaacLab task.

Table 5 summarizes the quantitative comparison between
Gewu and IsaacLab across the three reinforcement learning
tasks. It can be observed that although Gewu has a lower
timesteps per hour compared to IsaacLab, it achieves the
same performance goals (see attached video) with
significantly fewer simulation timesteps. For instance, in the
Gl1-Flat task, Gewu only needs 5 million simulation
timesteps while IsaacLab requires 100 million; in the
G1-Rough task, Gewu needs 20 million versus IsaacLab’s
300 million; and in the Gl-Dance task, Gewu needs 35
million compared to IsaacLab’s 1500 million. This confirms
Gewu’s high “learning efficiency per step” which is a more
meaningful metric for inclusive platforms than raw step
throughput.

Table 5 Training Comparison between Gewu and IsaacLab

RLT Si.mulation Tirpe. for Training speed
ask timesteps training o
(million) (hour) (million/hour)
Go2-Flat-Gewu 1.2 0.076 16
Go2-Flat-laacLab 32 0.082 390
G1-Flat-Gewu 5 0.29 17
G1-Flat-IsaacLab 100 0.33 303
G1-Rough-Gewu 20 300 18
G1-Rough-IsaacLab 1.12 1.23 244
G1-Dance-Gewu 35 1500 10
G1-Dance-IsaacLab 343 4.20 357

To explore how to make Gewu train faster, we
investigated the impact of increasing the number of parallel
training robots on the training process based on
G1-Flat-Gewu. Seven cases with parallel robot numbers n =
32, 64, 128, 256, 512, 1024, 2048 were considered, each
trained for 5 million steps (using no-graphics mode without
rendering).

#*#¥% (20%*) Vol.* No.*

0.34 0336

0.33
0.33
0.32
0.305
0.301
. 0.297
0.26 I

n=32 n=64 1n=128 n=256 n=512 n=1024 n=2048
Robot parallel numbers

<
Lo

(=]
13
=]

Time for training
=)
(5]

(=]
[
o0

=]
[
-~

Figure 24 Gewu training time for different robot parallel numbers.

—n=32 —n=64
2500

n=128 —n=256 —n=512 —n=1024 —n=2048

2000

1500

Reward

1000

500

Timesteps (million)

Figure 25 Gewu reward curves for different robot parallel numbers.

The training time is shown in Figure 24, and the reward
curves are shown in Figure 25. It can be seen from Figure
24 that the training speed is not faster as n increases; the
training speed is the fastest when n=256, but it is only
13.7% faster than when n=32. In addition, when n increases,
the reward curve tends to deteriorate. For example, the
reward rises much more slowly when n=2048. Therefore, it
is recommended to use a parallel number below 512 for
training.

Regarding GPU support, we acknowledge its importance
for large-scale RL workloads and are actively addressing
this: we have established collaboration with Unity China to
upgrade Unity’s PhysX engine, aiming to enable
GPU-accelerated parallel environment simulation for Gewu.
This upgrade will allow Gewu to leverage GPU resources
(when available) for physics calculation offloading,
projected to increase step throughput by 10-20x while
retaining CPU-only compatibility for accessibility.
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S4 Domain Randomization

To enhance the robustness of the reinforcement learning
policy and reduce the sim-to-real gap, we have integrated
domain randomization and observation noise into the Gewu
platform. In this section, we will investigate the
performance of Gewu under the conditions of domain
randomization and observation noise.

Taking the Go2-Flat and Gl1-Flat tasks as examples,
Table 6 lists the details of domain randomization and
observation noise. The training reward curves are shown in
Figs. 26 and 27, and the quantitative indicators of the
training process are presented in Table 7.

As can be seen from Figs. 26 and 27, the reward
decreases slightly after adding domain randomization.
However, this does not indicate a decline in performance.
To evaluate the performance of the trained policy, we tested
the failure case under domain randomization conditions
(conducted 20 runs, 10 seconds per run, with 16 robots, and
recorded the number of fallen robots). As shown in Table 7,
the failure rate of the policy trained with domain
randomization is significantly reduced, demonstrating the
effectiveness of domain randomization in improving
robustness. Additionally, it can be observed from Table 7

that domain randomization has little impact on training time.

For the same number of simulation timesteps, the training
time only increases by around 25%, which verifies the
efficiency of training with domain randomization on the
Gewu platform.

Table 6 Domain Randomization and Observation Noise

Randomized Parameter Noise Noise
Factor Variation Level
Friction [0.1,1.25] Angular velocity | ) 5
noise
Robot Mass [-3.0, 8.0] kg Gravity 0.05
projection noise
Push G1:[1.0,1.5]m/s Joint position 001
velocity Go2: [1.5,3.0]Jm/s noise ’
Push Every 3 seconds Joint ve locity 0.075
frequency noise
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Figure 27 Gl reward curve with and without domain randomization.

Table 7 Training Comparison for w/ and w/o Domain Randomization

Simulation Time for .
. .. Failure
Task timesteps training
e . case
(million) (min)
Go2-Flat
(trained without 1.2 4.5 6
domain randomization)
Go2-Flat
(trained with domain 1.2 5.7 0
randomization)
G1-Flat
(trained without 5 20 91
domain randomization)
G1-Flat
(trained with domain 5 25 3
randomization)

S5 Application to Lunar Locomotion Task

When Apollo astronauts first set foot on the Moon, they
discovered that movement and balance became
extraordinarily difficult due to the lunar environment’s
unique physical conditions. This challenge is not exclusive
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to humans—humanoid robots face equally daunting
obstacles in lunar locomotion. The most critical factor
affecting robotic movement in this environment is the
reduced gravity, which is merely 1/6 of Earth’s, rendering
terrestrial gait patterns ineffective. Consequently, simulating
low-gravity conditions during training is essential for
enabling robots to develop adaptive locomotion strategies.
To address this, we investigated lunar locomotion using the
Gl robot within the Gewu Playground simulation
framework, yielding preliminary insights into effective
movement approaches.

(1) Control Architecture

We employ the control architecture provided by Gewu,
which originates from the instruction learning method we
proposed earlier. Here, we examine it from an alternative
perspective and can regard it as a hybrid neural network, as
illustrated in Figure 28. The upper part of this architecture is
a conventional learnable neural network, whose input is the
robot’s state, and its weights are updated by the
reinforcement learning algorithm during training. The lower
part is a temporal network, with time variables as its input.
It operates as a preset function solely dependent on time,
directly injecting open-loop actions into the robot. These
actions remain frozen and are not updated during training.
The functions of these two networks are complementary,
with the temporal network being interpretable and the state
network being learnable. By integrating these two networks,
efficient learning can be achieved.

For running and jumping, we only employed different
temporal networks, while all other components, including
the reward function, remained exactly the same. For running,
the temporal network is designed to make the robot’s legs
alternate in a periodic stepping motion. For the jumping task,
the temporal network is designed to make the robot’s legs
bend and straighten synchronously in a periodic manner.

We use the same reward 7 =7, +7, +r, for both running

and jumping gaits (only difference is the feedforward
signal). Each component of the reward is
1) r,=1 is the alive reward. The robot receives this

reward per time step for not falling.

2) 1r,=-0.10,,,|-0.1

 ich Hmﬂ| is the balance reward (unit:

degree), which encourages keeping the body upright.
3) 7

reward, which encourages the robot to move forward.

+v is the velocity

vertical | vlateml

—2|v

yaw

/arward
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Figure 28 The concept of hybrid neural network.
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(2) Locomotion Training

We utilize Unity Terrain Editor to construct the lunar
surface terrain, leveraging its powerful functionality that
allows for the intuitive creation and modification of
large-scale terrains through tools like height mapping,
texture painting, and rock placement. Given the unique
characteristics of the lunar surface—such as its cratered
landscape, dramatic undulating terrain with steep slopes and
deep depressions, and uniform regolith texture—the Terrain
Editor enables us to precisely replicate these features by
adjusting elevation details, applying realistic lunar textures,
and simulating lighting conditions to achieve an authentic
lunar environment.

We selected a specific point on the constructed lunar
surface as the starting position for the robot. During training,
we created 24 replicas of the robot, each with a randomly
chosen yaw angle (moving direction) as shown in Figure 29,
which allows the robots to experience as many diverse
ground conditions as possible. Using a simulation time step
of 0.01 seconds, we reset the robots to the starting position
every 10 seconds. We trained the robots for 10 million steps
each on both the running and jumping tasks, with each task
requiring a simulation duration of 27.78 hours, while the
actual training time consumed was only 1.67 hours. The
reward curves are depicted in Figure 30. It can be observed
that the reward for running rises more rapidly and reaches a
higher final value. This may suggest that on the lunar
surface, running enables the robot to move faster and with
greater stability.
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Figure 29 Locomotion training on simulated lunar surface.
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Figure 30 The reward curves.

(3) Performance Evaluation

To evaluate the performance of the derived locomotion
policy, we had two robots perform running and jumping
respectively, and recorded their motion trajectories as
shown in Figure 31. It can be observed that the robot is
capable of jumping to significant heights on the lunar
surface, and its running gait also differs from that on Earth
(which is more evident in the supplementary video). For
quantitative assessment of locomotion performance, we
instructed the robot to move continuously in a straight
direction until it lost balance and fell, recording the
horizontal distance traveled. We selected forward directions
at 30-degree intervals, conducting three trials per direction
and averaging the results. The findings are presented in
Figure 32. As shown, the running policy consistently
outperformed the jumping policy in terms of travel distance
across all directions, indicating that running remains a more
efficient and stable mode of locomotion on the lunar
surface.
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Figure 32 Locomotion performance comparison.
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S6 Conclusions

This paper introduces Gewu Playground, a versatile,
open-source robot simulation platform built on Unity that
supports a wide range of embodied intelligence research,
including locomotion, manipulation, and autonomous
navigation. Its key innovations include enhanced Sim2Real
capabilities through ROS2 integration, adjustable gravity
fields, and terrain tools for modeling extraterrestrial
environments like lunar and Martian surfaces, enabling
rapid prototyping and experimentation across diverse robot
morphologies. A case study on lunar locomotion
demonstrated its ability to train adaptive movement
strategies for humanoid robots, revealing that running
policies outperformed jumping in stability, providing
valuable insights for future lunar exploration missions.
Gewu Playground represents a significant advancement
by offering a unified, user-friendly framework for both
traditional and learning-based robotic research across
terrestrial and extraterrestrial scenarios, aligning with global
space initiatives. Looking ahead, plans include enhancing
physics modeling, expanding multi-agent simulations, and
improving cross-platform compatibility, while fostering a



vibrant
documentation and resources.

**% et al.

research community through comprehensive

By lowering technical

barriers, Gewu Playground aims to empower a broader
range of researchers to contribute to the next generation of
intelligent robotic systems for Earth and beyond.
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