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Embodied intelligence, which integrates robotics and 

artificial intelligence, relies heavily on simulation platforms 

to develop adaptive behaviors through perception, cognition, 

and action. Traditional robotic simulation tools such as 

Webots [1], Gazebo [2], and V-REP [3] have significantly 

contributed to the field by supporting kinematic and 

dynamic model-based research. However, the advent of 

learning-based methods, particularly reinforcement learning 

(RL), has created a demand for platforms specifically 

designed to facilitate these approaches, with IsaacLab [4], 

MuJoCo Playground [5], and Genesis emerging as key 

solutions. IsaacLab provides a high-fidelity NVIDIA 

simulation toolkit with photorealistic rendering, supporting 

multi-modal robotic platforms via a unified API for 

seamless reinforcement learning algorithm integration; 

MuJoCo Playground leverages the MuJoCo physics engine 

for rapid sim2real policy iteration, featuring on-device 

rendering, domain randomization, and pre-built benchmarks 

across quadrupeds, humanoids, and dexterous manipulators; 

while Genesis employs data-driven generative physics 

modeling to create dynamic simulation environments for 

manipulation and locomotion tasks, enabling on-the-fly 

scenario generation for scalable experimentation. 

 Unity, primarily known as a game engine, has emerged 

as a powerful tool for embodied AI research, offering 

frameworks like AI2-Thor [6] and Unity ML-Agents Toolkit 

[7] that provide intuitive environments for training 

intelligent agents. Unity offers unique advantages for 

embodied intelligence research by providing 

near-photorealistic rendering and multi-modal inputs for 

perception tasks, integrating advanced physics engines for 

dynamic interactions like deformable objects, and enabling 

hierarchical tasks and multi-agent collaboration through C# 

scripting—features that surpass MuJoCo’s limited state 

inputs and lack of multi-agent support, as well as IsaacSim’s 

focus on robotic fleets over sensory and dynamic 

environment flexibility. 
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Built on Unity, we introduce Gewu Playground 

(https://github.com/loongOpen/Unity-RL-Playground/), a 

comprehensive, open-source robot simulation platform that 

supports a wide range of embodied intelligence tasks. Gewu 

Playground extends the capabilities of Unity RL Playground 

[8], offering enhanced features for locomotion, 

manipulation, and navigation tasks. It is designed to 

facilitate rapid prototyping, accommodate diverse robot 

types, and enable seamless sim2real transfer via ROS2 

integration. Core to Gewu Playground are three innovations 

addressing key embodied intelligence challenges: an 

efficient instruction learning-based RL framework; low-cost 

hardware requirements enabling efficient CPU-based 

training accessible to broader researchers; and deep 

integration with Unity’s ecosystem to leverage its 

high-quality simulation capabilities, including photorealistic 

multi-modal rendering, flexible physics (rigid/soft-body, 

fluid dynamics), and modular scripting.  

 
(a) Gewu Playground Main Menu 

 

   
(b) Comparison of Gewu and IsaacLab                     (c) Lunar Locomotion with Gewu 

Figure 1  Gewu Playground Introduction. 

 

 

https://github.com/loongOpen/Unity-RL-Playground/
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Gewu Playground integrates eight specialized modules 

(Fig. 1a): universal locomotion, uneven terrain locomotion, 

motion imitation, Sim2Real transfer, robot soccer, mobile 

manipulation, autonomous navigation, and robot animation. 

Each module provides guided examples and supports the 

import of custom robot models with minimal configuration 

overhead, ensuring accessibility across diverse research 

applications. 

The platform leverages Unity’s modular ecosystem, 

utilizing the URDF Importer package to seamlessly convert 

Unified Robot Description Format (URDF) models into 

Unity’s ArticulationBody components for high-fidelity 

physics simulation. For reinforcement learning, Gewu 

Playground employs the ML-Agents toolkit, which supports 

Proximal Policy Optimization (PPO), Soft Actor-Critic 

(SAC), as well as Multi-Agent Policy Optimization with 

Credit Assignment (MA-POCA) algorithms, ensuring robust 

policy optimization across various robotic tasks. 

Gewu aims to be an inclusive embodied intelligence 

platform accessible to all. A key feature of Gewu 

Playground is its high learning efficiency achieved through 

Instruction Learning [9]. Unlike IsaacLab, which needs 

high-end GPUs like GeForce RTX 4080, Gewu can train 

efficiently on CPUs, achieving equal-level results with far 

fewer simulation timesteps (Fig. 1b). This shows its high 

“learning efficiency per step”. While recognizing GPUs’ 

value for large-scale tasks, Gewu is collaborating with 

Unity China to upgrade the PhysX engine for 

GPU-accelerated parallel simulation, which will boost step 

throughput 10–20x while still supporting CPU-only use. 

The platform’ high-quality simulation features and terrain 

construction tools make it an ideal environment for training 

robots for extraterrestrial exploration, such as lunar or 

Martian missions. To demonstrate Gewu Playground’s 

capabilities, we investigated locomotion strategies for 

humanoid robots under lunar low-gravity conditions (Fig. 

1c). The lunar environment’s unique physical characteristics, 

particularly its reduced gravity (1/6 of Earth’s), pose 

significant challenges for robotic movement and balance. 

Simulating these conditions during training is essential for 

enabling robots to develop adaptive locomotion strategies. 

Using the Unitree G1 robot within Gewu Playground, we 

trained two efficient locomotion patterns: running and 

jumping. The control architecture employed a hybrid neural 

network, combining a conventional learnable neural 

network with a temporal network that injects open-loop 

actions based on time variables. This architecture allowed 

for efficient learning and the development of stable 

locomotion policies. 

The lunar surface terrain was constructed using Unity 

Terrain Editor, which enabled precise replication of the 

Moon’s cratered landscape and undulating terrain. Training 

involved creating multiple replicas of the robot, each with a 

randomly chosen yaw angle, to experience diverse ground 

conditions. The robots were trained for 10 million steps 

each on running and jumping tasks, achieving stable and 

efficient locomotion policies. 

Performance evaluation revealed that the running policy 

consistently outperformed the jumping policy in terms of 

travel distance and stability. These findings provide 

valuable insights for future robotic lunar exploration 

missions, demonstrating Gewu Playground’s ability to train 

adaptive movement strategies for humanoid robots in 

extraterrestrial environments. 

Gewu Playground represents a significant advancement 

in robot simulation platforms, offering a unified, 

user-friendly framework for embodied intelligence research. 

Its key innovations include universally efficient 

reinforcement learning framework, ease of use with low 

hardware requirements, and seamless integration with 

Unity’s rich ecosystem. The platform supports a wide range 

of tasks, including locomotion, manipulation, and 

navigation, making it suitable for both traditional and 

learning-based robotic research. 

By lowering technical barriers, Gewu Playground 

empowers a broader range of researchers to contribute to 

the next generation of intelligent robotic systems. Its future 

plans include enabling GPU-accelerated training, adapting 

to more physical robot models, and expanding embodied 

intelligence applications. With its versatile learning 

architecture, Gewu Playground is poised to accelerate the 

transition from laboratory prototypes to interplanetary 

robotic systems, aligning with global space initiatives. 

This work was supported by the Shanghai “Science and Technology 

Innovation Action Plan” Next-Generation Information Technology Domain 

Key Technology Breakthrough Program (Grant No. 24511103304). 
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S1  Introduction 

Embodied intelligence represents the combination of 

robotics and artificial intelligence, where simulation 

platforms provide the essential infrastructure for robots to 

develop adaptive behaviors through integrated perception, 

cognition, and action—bridging the gap between virtual 

training and real-world deployment. 

The evolution of robotics has been inextricably linked to 

simulation platforms, with a series of influential and widely 

adopted tools emerging since the 1990s. Notable examples 

include: Webots (1998) [1]: Developed by the Cyberbotics 

company, renowned for its physics-accurate rendering and 

cross-platform compatibility; Gazebo (2004) [2]: Rapidly 

gained prominence through ROS integration; V-REP (2013, 

now CoppeliaSim) [3]: Featuring a modular architecture 

that supports multiple physics engines concurrently. Those 

robotic simulation platforms reveals distinct functional 

paradigms: Webots prioritizes perceptual fidelity with 

photorealistic rendering and standardized robot models, 

facilitating perception-driven navigation research; Gazebo 

dominates open-source academic research via its scalable 

plugin ecosystem, ROS-native integration, and support for 

large-scale multi-agent simulations, as evidenced by its 

widespread adoption in DARPA Robotics Challenge; while 

V-REP (CoppeliaSim) excels in modular versatility, 

supporting multiple physics engines and rendering modes 

through its distributed architecture, making it ideal for 

industrial manipulation prototyping. These platforms 

collectively address the fidelity-performance tradeoff and 

usability-flexibility balance, reflecting evolving efforts to 

bridge simulation-to-reality gaps through enhanced physics 

modeling and sensor simulation, as underscored by recent 

comparative studies [4,5]. 

While the aforementioned simulation platforms have 

achieved remarkable success in traditional robotic control 

field by primarily supporting algorithm development based 

on kinematic and dynamic models, recent years have 

witnessed a paradigm shift: model-based approaches are 

being increasingly superseded by learning-based methods, 

with reinforcement learning [6-8] emerging as the dominant 

framework for robotic control. To better accommodate the 

demands of robotic reinforcement learning, a proliferation 

of novel simulation platforms has emerged in recent years 

[9].  

OpenAI Gym [10], a foundational framework for 

reinforcement learning algorithm development, provides 

standardized environments for benchmarking control 

policies, including classical robotic tasks like CartPole and 

MountainCar, and has been extended to robotics via the 

Roboschool and PyBullet integrations. PyRep [11], built 

atop V-REP, bridges the gap between traditional robotic 

simulation and deep learning by offering a Python API for 

rapid scene construction, domain randomization, and 

real-time sensor simulation, enabling end-to-end training of 

vision-based manipulation policies. Legged Gym [12] 

specializes in legged robotics, offering GPU-accelerated 
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physics simulations to efficiently train locomotion policies 

across diverse robot morphologies and terrains, with 

emphasis on rapid experimentation and sim2real 

deployment. Humanoid-Gym [13], built on NVIDIA Isaac 

Gym, focuses on humanoid robot locomotion through 

zero-shot sim2real transfer, incorporating domain 

randomization and advanced reward shaping for policy 

robustness. IsaacLab [14] provides a high-fidelity NVIDIA 

simulation toolkit with photorealistic rendering, supporting 

multi-modal robotic platforms via a unified API for 

seamless reinforcement learning algorithm integration. 

MuJoCo Playground [15] leverages the MuJoCo physics 

engine [16] for rapid sim2real policy iteration, featuring 

on-device rendering, domain randomization, and pre-built 

benchmarks across quadrupeds, humanoids, and dexterous 

manipulators. Finally, Genesis [17] employs data-driven 

generative physics modeling to create dynamic simulation 

environments for manipulation and locomotion tasks, 

enabling on-the-fly scenario generation for scalable 

experimentation. 

Besides, Unity is primarily known as a game engine, has 

emerged as a powerful platform for Embodied AI research, 

enabling the development of interactive 3D environments 

for robot learning. Notable frameworks built on Unity 

include AI2-Thor [18], which provides photorealistic indoor 

scenes for visual navigation tasks, and Unity ML-Agents 

Toolkit [19], which provides a user-friendly and versatile 

framework for the training of intelligent agents through 

reinforcement learning. Unity ML-Agents is designed to be 

intuitive and easy to use, with a focus on rapid development 

of games.  

Table 1 Comparative Summary: Unity vs. MuJoCo/IsaacSim 

Feature Unity MuJoCo IsaacSim 

Sensory 

Simulation 

Multi-modal, 

photorealistic 
rendering 

Low-dimension 

state inputs only 

GPU-rendered but 

physics-prioritized 

Physical 

Dynamics 

Rigid/soft-bod
y + real-time 

object 

spawning 

Excellent 
rigid-body 

(fixed models 

only) 

GPU-accelerated 

(fleet-focused) 

Task/Multi

-agent 

Hierarchical 

tasks + native 
networking 

Single-task (no 

multi-agent) 

Robotic control 

(limited 
customization) 

Unlike pure robotic control, embodied RL requires 

multi-dimensional environmental complexity (sensory, 

physical, task-logic, social) to bridge the reality gap—an 

area where Unity has particular advantages, as shown in 

Table 1. First, Unity supports near-photorealistic rendering 

(dynamic lighting, custom shaders) and multi-modal inputs 

(depth maps, LiDAR emulation), critical for 

pixel-level/multi-modal perception tasks. In contrast, 

MuJoCo focuses on low-dimensional state inputs, while 

IsaacSim prioritizes physics over sensory flexibility. Second, 

Unity integrates industry-leading physics engines (NVIDIA 

PhysX, Havok), enabling rigid-body, soft-body, and fluid 

dynamics—supporting dynamic interactions (e.g., 

deformable objects, real-time obstacle spawning). MuJoCo 

lacks flexible object instantiation, and IsaacSim is 

optimized for large robotic fleets but not dynamic 

environment design. Third, Unity’s C# scripting enables 

hierarchical tasks and multi-agent collaboration via built-in 

networking. MuJoCo has no multi-agent support, and 

IsaacSim limits interactions to agent-robot scenarios. 

Based upon Unity, we developed Unity RL Playground 

[20], a dedicated reinforcement learning framework for 

mobile robots. It is designed to be operated with minimal 

programming expertise, allowing users to easily import their 

custom robot models for comprehensive multi-modal 

motion training. However, Unity RL Playground was 

originally designed for locomotion tasks of mobile robots, 

restricting its applicability to broader embodied intelligence 

tasks. To address this, we developed the Gewu Playground 

as an enhanced extension of Unity RL Playground, 

transforming it into a comprehensive research platform for 

embodied intelligence with multi-domain task support. 

  
(a) Indoor near-photorealistic rendering    (b) Ourdoor near-photorealistic rendering 

  
(c) Rigid-body and soft-body interaction     (d) Rigid-body and fluid interaction 

Figure 1  Gewu high-quality simulation capabilities. 

Gewu Playground integrates three core innovations to 

address key challenges in embodied intelligence research: 

first, an efficient reinforcement learning framework built on 

the instruction learning paradigm, which achieves high 

“learning efficiency per step” by synergizing feedforward 

action primitives with RL-based stabilization, enabling 

rapid policy convergence even for complex tasks; second, 

low-cost hardware requirements that eliminate dependency 

on high-end GPUs—training can be completed efficiently 

on standard CPUs, making embodied intelligence research 

accessible to a broader audience; third, deep integration 

with Unity’s ecosystem and access to its high-quality 
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simulation capabilities (see Figure 1), leveraging its 

photorealistic multi-modal rendering, flexible physics 

simulation (rigid-body, soft-body, fluid dynamics), and 

modular scripting to support diverse task scenarios from 

terrestrial manipulation to extraterrestrial locomotion. 

In the coming era, embodied intelligence will transcend 

terrestrial boundaries—not only reshaping our daily life 

through intelligent agents but also spearheading humanity’s 

expansion into space, as evidenced by China’s 2035 vision 

for the International Lunar Research Station and SpaceX’s 

Mars Base Alpha initiative. This cosmic frontier poses 

unprecedented challenges for robotic exploration: the lunar 

and Martian gravities—merely 1/6 and 3/8 of 

Earth’s—combined with unique terrains demand radical 

rethinking of locomotion control. Previous research has 

primarily focused on quadrupedal robot locomotion on the 

Moon and Mars [21,22], while studies involving humanoid 

robots remain scarce. Addressing these extraterrestrial 

constraints, Gewu Playground emerges as a universal 

simulation infrastructure that enables cross-planetary 

dynamics modeling via adjustable gravity fields and terrain 

construction supports. By bridging the sim2real gap for both 

terrestrial and extraterrestrial environments, Gewu 

Playground establishes itself as a critical enabler for 

space-ready embodied intelligence, accelerating the 

transition from laboratory prototypes to interplanetary 

robotic systems. 

The contributions of this paper are as follows. First, we 

develop the framework of Gewu Playground. Compared to 

Unity RL Playground, Gewu Playground has undergone a 

comprehensive upgrade, not only expanding locomotion 

tasks to include complex terrain adaptation and whole-body 

imitation learning but also introducing new modules 

including imitation learning, manipulation, and navigation.  

Furthermore, it integrates ROS2 to enable 

higher-performance and more universal sim2real transfer 

capabilities. Second, leveraging the Gewu Playground 

framework, we investigated locomotion strategies for 

humanoid robots under lunar low-gravity conditions, 

successfully training two efficient locomotion 

patterns—running and jumping—which were validated 

through simulation on virtual lunar terrain. These findings 

provide critical technical support for future robotic lunar 

exploration missions. 

S2  Gewu Playground Framework 

Gewu Playground framework is shown in Figure 2. 

Leveraging Unity’s modular ecosystem, we streamline 

robotic system integration through the URDF Importer 

package, which enables seamless conversion of Unified 

Robot Description Format (URDF) models into Unity’s 

ArticulationBody components—optimized for high-fidelity 

physics simulation via the PhysX engine. For reinforcement 

learning implementation, we utilize the ML-Agents toolkit, 

which provides PyTorch-backed training pipelines 

supporting Proximal Policy Optimization (PPO), Soft 

Actor-Critic (SAC) algorithms, and Multi-Agent Policy 

Optimization with Credit Assignment (MA-POCA), 

ensuring policy optimization across diverse robotic tasks. 

 

Figure 2  Gewu Playground framework.  

Gewu Playground currently integrates eight specialized 

modules—universal locomotion, uneven terrain locomotion, 

motion imitation, Sim2Real transfer, robot soccer, mobile 

manipulation, autonomous navigation, and robot 

animation—where the first three modules form the 

foundational reinforcement learning training infrastructure 

for developing core robotic motor skills, enabling 

subsequent adaptation to complex tasks; each module 

includes guided examples demonstrating its functionality, 

and recognizing the need for custom hardware integration, 

we provide an intuitive template for importing and training 

user-defined robotic models with minimal configuration 

overhead, ensuring seamless accessibility across diverse 

research applications.  

(1) Universal Locomotion 

This module facilitates foundational locomotion training 

for diverse robotic morphologies, including bipedal, 

quadrupedal, biped-wheeled hybrid, and 

quadruped-wheeled hybrid systems. As presented in Figure 

3, we have tested over 80 different robots using Gewu 

Playground. 

 

Figure 3  Diverse robot support of Gewu playground.  

For each configuration, we provide three distinct motion 

control modes implemented via an instruction learning [23] 

paradigm that synergizes feedforward action primitives with 

reinforcement learning-based stabilization. To streamline 
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user interaction, we developed a dedicated setup interface 

within Unity’s Inspector panel (Figure 4, right), enabling 

intuitive specification of robot type and target motion 

patterns during URDF model import. The training workflow 

is further optimized through a “Fixbody” validation toggle, 

allowing users to pre-verify feedforward action correctness 

before training. For computational efficiency, the system 

automatically spawns 32 parallel robot instances during 

training, achieving 20× real-time simulation acceleration 

while maintaining physics fidelity through Unity’s 

deterministic PhysX integration. It should be noted that 

GPU-based parallel training is currently not supported; 

however, the training speed remains highly efficient, 

depending primarily on CPU performance. Even with a 

standard laptop, training can typically be completed within 

tens of minutes to a few hours. 

 

Figure 4  Universal locomotion diagram. 

 

Figure 5  Reward curves for universal locomotion. 

Table 2 Training Details for Universal Locomotion  

Robot 
Tron1- 

walk 

G1- 

walk 

Go2-

trot 

Go2w

-walk 

Loong

-run 

X02-

jump 

Simulation 

timesteps 

(million) 

4 2 1 1 3 2 

Time for 
training 

(hour) 
0.31 0.19 0.10 0.10 0.33 0.17 

We employed a laptop (Intel(R) Core(TM) i9-14900HX 

CPU and an NVIDIA GeForce RTX 4080 GPU) for training. 

The reward curve is depicted in Figure 5, and the training 

details are listed in Table 2. It can be observed that all six 

locomotion tasks can be trained and completed within a 

very short time (1 to 4 million timesteps, spanning 0.1 to 0.3 

hours). 

(2) Rough Terrain Locomotion 

To train complex terrain locomotion capabilities, we 

developed a pyramid staircase environment incorporating 

both convex (upward) and concave (downward) stairs. The 

neural network architecture remained identical to prior 

implementations, with the key innovation being the 

adoption of a terrain-adaptive curriculum learning strategy. 

During training, we progressively increased step heights 

from 5 cm to 10 cm, and subsequently to 15 cm, to 

systematically enhance environmental complexity. Four 

humanoid robots with distinct structural designs and 

physical dimensions were selected for training, all of which 

ultimately demonstrated proficient stair climbing and 

descending abilities. 

We employed a laptop (Intel(R) Core(TM) i9-14900HX 

CPU and an NVIDIA GeForce RTX 4080 GPU) for training. 

For the four robots, we trained each for 20 million timesteps, 

and the time taken ranged from 1.28 to 1.57 hours. The 

reward curve is depicted in Figure 7, and the training details 

are listed in Table 3.  

 

Figure 6  Rough terrain locomotion diagram. 

 

Figure 7  Reward curves for rough terrain locomotion. 
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Table 3 Training Details for Rough Terrain Locomotion  

Robot G1 Loong T1 Zqsa01 

Simulation 

timesteps 

(million) 

20 20 20 20 

Time for 

training 

(hour) 

1.51 1.57 1.30 1.28 

 

(3) Motion Imitation 

The motion imitation module facilitates whole-body 

motion imitation learning for humanoid robots by 

retargeting human motion capture data to robotic joints and 

conducting training through instruction learning methods, 

enabling the robots to acquire human-like motion patterns. 

We have provided some retargeted data for Unitree H1 and 

G1 robots, sourced from the AMASS [24] and LEFAN1 [25] 

datasets respectively, and pre-trained several motion 

sequences including guitar playing, golf swinging, violin 

playing, and waving for H1 (using a shared neural network), 

as well as Charleston dancing for G1. To use this module, 

users can import new motion data, modify targeted motion 

to imitate via the inspector window, and enable the Replay 

option to visualize motion retargeting animations. 

 

Figure 8  Motion imitation diagram. 

We employed a laptop (Intel(R) Core(TM) i9-14900HX 

CPU and an NVIDIA GeForce RTX 4080 GPU) for training. 

The reward curves are depicted in Figure 9 and Figure 10, 

and the training details are listed in Table 4. For H1 robot, 

we trained a single neural network for 7 movements (golf, 

guitar, tennis, violin, wave both, wave left, wave right) over 

12 million steps using curriculum learning.  During the 

first 10 million steps, we trained each movement for 300 

seconds before switching to the next to ensure full practice 

of every action; in the last 2 million steps, we reduced each 

movement’s training time to 30 seconds (i.e., increased 

switching frequency) to effectively mitigate forgetting. For 

G1 robot, we trained a long-cycle task—the Charleston 

dance—which took 3.43 hours to complete. 

 

Figure 9  Reward curve for H1 imitation task. 

 

Figure 10  Reward curve for G1 imitation task. 

Table 4 Training Details for Imitation Learning  

Robot H1 G1 

Simulation timesteps 

(million) 
12 35 

Time for training 

(hour) 
1.07 3.43 

 

(4) Sim2Real 

Sim2Real serves as a bridge connecting simulation and 

physical robots. Leveraging ROS2 For Unity, we developed 

an integrated Sim2Real framework and applied it to the 

Unitree Go2 robot. ROS2 For Unity provides a 

high-performance communication solution that natively 

connects the Unity3D engine with the ROS2 ecosystem. To 

enable real-time robot-Unity communication, we compiled 

ROS2 core functions and Unitree’s ROS packages into 

dynamic link libraries (DLLs) callable within Unity, 

allowing the creation of ROS nodes in Unity for subscribing 

to sensor data from and publishing control commands to the 

Go2 robot. We established ROS communication via 

Ethernet connection between the robot and computer, 
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achieving state and sensor data alignment between the 

simulated and physical robots. This enables identical control 

of both simulated and physical robots through Unity, as if 

they were the same model. By deploying two identical 

pre-trained neural networks—one for the simulated robot 

and one for the physical counterpart—we simultaneously 

visualized control effects in both environments (see Figure 

11). A dedicated control interface was developed: after 

program initiation, users click “Stand Up” to raise the robot, 

enable feedforward control via the “FF Enable” checkbox 

(triggering stepping motion), then activate neural network 

control with “NN Enable” for keyboard-based 

forward/turning movement, and finally use “Lie Down” to 

deactivate the robot. This functionality enables seamless 

transfer and rapid validation of trained policies. Moreover, 

owing to ROS2’s platform-agnostic design, our approach 

can be easily extended to other robotic platforms. 

 

Figure 11  Sim2Real diagram. 

(5) Robot Soccer 

In the robot soccer module, we implemented a dual-robot 

(OpenLoong) combat and soccer system. Adopting a 

hierarchical control architecture, the low-level motion 

control employs reinforcement learning to enable basic 

locomotion (forward movement and steering), while the 

high-level strategy utilizes rule-based decision-making: one 

robot tracks and kicks the ball, while the other pursues the 

kicking robot to initiate combat, delivering punches to 

knock it down when within striking distance. Fallen robots 

automatically reset to upright positions. This configuration 

produces rich adversarial interactions between the robots. 

Additionally, the high-level strategy can also be trained via 

reinforcement learning using ML-Agents’ MA-POCA 

algorithm. 

 

Figure 12  Robot soccer diagram. 

(6) Mobile Manipulation 

The mobile manipulation module is designed for 

humanoid robot operation tasks. Currently, it provides a 

foundational keyboard-based control interface, enabling 

users to manipulate robot locomotion (walking, stopping, 

forward/backward movement, and left/right turning) and 

dual-arm end-effector poses with gripper actuation via 

computer keystrokes. Locomotion is achieved through 

reinforcement learning, while manipulation employs inverse 

kinematics (IK). Since Unity lacks built-in IK algorithms, 

we developed an innovative solution: we duplicated an 

identical robot model for IK computation (referred to as the 

IK robot). This replica operates in a low-gain PD control 

mode (follower mode), allowing effortless end-effector 

positioning akin to manually guiding a robotic arm. By 

fixing the IK robot’s torso and connecting both 

end-effectors to static objects via fixed joints, we 

manipulate the static objects to desired positions, causing 

the robotic arm joints to follow accordingly. The resulting 

joint angles of this IK robot represent the IK solutions, 

which are then applied to the corresponding joints of the 

controlled robot, enabling precise end-effector translation 

and rotation. This approach successfully validated cube 

grasping tasks, demonstrating its effectiveness. 

 

Figure 13  Mobile manipulation diagram. 

(7) Autonomous Navigation 

The autonomous navigation module leverages Unity’s AI 

Navigation package—a game development-oriented 

navigation system that enables intelligent path planning and 

movement control for in-game characters. This system 

allows characters to automatically compute optimal paths 

based on environmental obstacles, terrain features, and 

other scene information, then navigate to target positions 

along these trajectories. When adapted for robotic 

applications, we employ AI Navigation to control the 

motion of a massless virtual object, with the physical robot 

following its movement. We developed a park scenario for 

testing and implemented it on a Unitree Go2 robot. Through 

mouse-click target selection on the screen, the robot 

successfully navigates to designated positions using AI 

Navigation-planned routes while avoiding obstacles. 
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Figure 14  Autonomous navigation diagram. 

(8) Robot Animation 

The robot animation module enables the creation of 

realistic robot animations for scenarios where dynamic 

simulation is not required. Most video games utilize 

animation systems rather than physics-based simulation, 

resulting in mature, user-friendly, and highly versatile 

animation frameworks.  

 

Figure 15  Robot animation diagram. 

To control robots via animation, the critical step is 

converting them into skeletal structures. This process is 

straightforward in Unity: simply import the robot’s URDF 

model, convert it to an FBX file, perform proper skeletal 

rigging, and then leverage Unity’s animation tools. By 

dragging animation sequences onto the robot’s skeletal 

hierarchy, rapid animation implementation becomes 

possible. We applied this workflow to the G1 robot, 

completing skeletal rigging and producing a concert 

performance animation that demonstrates exceptionally 

smooth motion effects. 

S3  Learning Efficiency of Gewu 

Gewu’s core design goal is to build an inclusive embodied 

intelligence platform accessible to the general public. While 

GPU-based large-scale parallel training significantly 

accelerates training speed, it also imposes high hardware 

requirements on computers. For instance, IsaacLab 

mandates a minimum configuration of GeForce RTX 4080 

with 16 GB VRAM, making it hardly accessible to the 

general public. In contrast, to develop a universal and 

inclusive embodied intelligence platform, Gewu enables 

efficient training without relying on a GPU—this advantage 

is attributed to the Instruction Learning framework we 

adopted.  

To evaluate the learning efficiency of Gewu 

quantitatively, we compared it with IsaacLab on one 

reinforcement learning tasks using the Go2 quadruped 

robot—locomotion on flat ground (Go2-Flat), as well as 

three reinforcement learning tasks using the G1 humanoid 

robot—locomotion on flat ground (G1-Flat), locomotion on 

stairs (G1-Rough), and imitation learning 

(G1-Dance)—with training conducted on the same laptop 

(Intel(R) Core(TM) i9-14900HX CPU, NVIDIA GeForce 

RTX 4080 GPU; note: Gewu ran on CPU only, while 

IsaacLab used GPU acceleration). The obtained simulation 

results can be found in the attached video. 

(1) Go2-Flat Task 

The Go2-Flat task involves quadruped locomotion with 

omnidirectional movement on flat ground. We trained until 

the robot could complete the tasks stably. The reward curves 

for Gewu and IsaacLab are depicted in Figure 16 and Figure 

17, respectively. 

 

Figure 16  Reward curve for Go2-Flat-Gewu task. 

 

Figure 17  Reward curve for Go-Flat-IsaacLab task. 
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(2) G1-Flat Task 

The G1-Flat task involves standing and omnidirectional 

walking on flat ground. We trained until the robot could 

complete the tasks stably. The reward curves for Gewu and 

IsaacLab are depicted in Figure 18 and Figure 19, 

respectively. 

 

Figure 18  Reward curve for G1-Flat-Gewu task. 

 

Figure 19  Reward curve for G1-Flat-IsaacLab task. 

(3) G1-Rough Task 

The G1-Rough task involves training the robot to walk 

on a rectangular-loop staircase (each step is 15 cm high and 

30 cm wide), and we continued the training until the robot 

achieved an almost 100% success rate in climbing up and 

down the stairs. The reward curves for Gewu and IsaacLab 

are depicted in Figure 20 and Figure 21, respectively. 

(4) G1-Dance Task 

The G1-Dance task involves training the robot to 

perform the Charleston dance, and we continued the 

training until the robot could stably complete the first 10 

seconds of the dance. The reward curves for Gewu and 

IsaacLab (using AMP algorithm) are depicted in Figure 22 

and Figure 23, respectively. 

 

Figure 20  Reward curve for G1-Rough-Gewu task. 

 

Figure 21  Reward curve for G1-Rough-IsaacLab task. 

 

Figure 22  Reward curve for G1-Dance-Gewu task. 
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Figure 23  Reward curve for G1-Dance-IsaacLab task. 

Table 5 summarizes the quantitative comparison between 

Gewu and IsaacLab across the three reinforcement learning 

tasks. It can be observed that although Gewu has a lower 

timesteps per hour compared to IsaacLab, it achieves the 

same performance goals (see attached video) with 

significantly fewer simulation timesteps. For instance, in the 

G1-Flat task, Gewu only needs 5 million simulation 

timesteps while IsaacLab requires 100 million; in the 

G1-Rough task, Gewu needs 20 million versus IsaacLab’s 

300 million; and in the G1-Dance task, Gewu needs 35 

million compared to IsaacLab’s 1500 million. This confirms 

Gewu’s high “learning efficiency per step” which is a more 

meaningful metric for inclusive platforms than raw step 

throughput. 

Table 5 Training Comparison between Gewu and IsaacLab 

RL Task 
Simulation 
timesteps 

(million) 

Time for 
training 

(hour) 

Training speed 

(million/hour) 

Go2-Flat-Gewu 1.2 0.076 16 

Go2-Flat-IaacLab 32 0.082 390 

G1-Flat-Gewu 5 0.29 17 

G1-Flat-IsaacLab 100 0.33 303 

G1-Rough-Gewu 20 300 18 

G1-Rough-IsaacLab 1.12 1.23 244 

G1-Dance-Gewu 35 1500 10 

G1-Dance-IsaacLab 3.43 4.20 357 

To explore how to make Gewu train faster, we 

investigated the impact of increasing the number of parallel 

training robots on the training process based on 

G1-Flat-Gewu. Seven cases with parallel robot numbers n = 

32, 64, 128, 256, 512, 1024, 2048 were considered, each 

trained for 5 million steps (using no-graphics mode without 

rendering).  

 

Figure 24  Gewu training time for different robot parallel numbers. 

 

Figure 25  Gewu reward curves for different robot parallel numbers. 

The training time is shown in Figure 24, and the reward 

curves are shown in Figure 25. It can be seen from Figure 

24 that the training speed is not faster as n increases; the 

training speed is the fastest when n=256, but it is only 

13.7% faster than when n=32. In addition, when n increases, 

the reward curve tends to deteriorate. For example, the 

reward rises much more slowly when n=2048. Therefore, it 

is recommended to use a parallel number below 512 for 

training. 

Regarding GPU support, we acknowledge its importance 

for large-scale RL workloads and are actively addressing 

this: we have established collaboration with Unity China to 

upgrade Unity’s PhysX engine, aiming to enable 

GPU-accelerated parallel environment simulation for Gewu. 

This upgrade will allow Gewu to leverage GPU resources 

(when available) for physics calculation offloading, 

projected to increase step throughput by 10–20x while 

retaining CPU-only compatibility for accessibility. 
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S4  Domain Randomization 

To enhance the robustness of the reinforcement learning 

policy and reduce the sim-to-real gap, we have integrated 

domain randomization and observation noise into the Gewu 

platform. In this section, we will investigate the 

performance of Gewu under the conditions of domain 

randomization and observation noise. 

Taking the Go2-Flat and G1-Flat tasks as examples, 

Table 6 lists the details of domain randomization and 

observation noise. The training reward curves are shown in 

Figs. 26 and 27, and the quantitative indicators of the 

training process are presented in Table 7. 

As can be seen from Figs. 26 and 27, the reward 

decreases slightly after adding domain randomization. 

However, this does not indicate a decline in performance. 

To evaluate the performance of the trained policy, we tested 

the failure case under domain randomization conditions 

(conducted 20 runs, 10 seconds per run, with 16 robots, and 

recorded the number of fallen robots). As shown in Table 7, 

the failure rate of the policy trained with domain 

randomization is significantly reduced, demonstrating the 

effectiveness of domain randomization in improving 

robustness. Additionally, it can be observed from Table 7 

that domain randomization has little impact on training time. 

For the same number of simulation timesteps, the training 

time only increases by around 25%, which verifies the 

efficiency of training with domain randomization on the 

Gewu platform. 

Table 6 Domain Randomization and Observation Noise  

Randomized 

Factor 

Parameter 

Variation 
Noise 

Noise 

Level 

Friction [0.1, 1.25] 
Angular velocity 

noise 
0.05 

Robot Mass [-3.0, 8.0] kg 
Gravity 

projection noise 
0.05 

Push 

velocity 

G1: [1.0,1.5]m/s 

Go2: [1.5,3.0]m/s 

Joint position 

noise  
0.01 

Push  

frequency 
Every 3 seconds 

Joint velocity 

noise 
0.075 

 

 
Figure 26  Go2 reward curve with and without domain randomization.  

 

 
Figure 27  G1 reward curve with and without domain randomization. 

 

Table 7 Training Comparison for w/ and w/o Domain Randomization 

Task 

Simulation 

timesteps 

(million) 

Time for 

training 

(min) 

Failure 

case 

Go2-Flat 

(trained without 

domain randomization) 

1.2 4.5 6 

Go2-Flat 

(trained with domain 

randomization) 

1.2 5.7 0 

G1-Flat 

(trained without 

domain randomization) 

5 20 91 

G1-Flat 

(trained with domain 

randomization) 

5 25 3 

S5  Application to Lunar Locomotion Task 

When Apollo astronauts first set foot on the Moon, they 

discovered that movement and balance became 

extraordinarily difficult due to the lunar environment’s 

unique physical conditions. This challenge is not exclusive 
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to humans—humanoid robots face equally daunting 

obstacles in lunar locomotion. The most critical factor 

affecting robotic movement in this environment is the 

reduced gravity, which is merely 1/6 of Earth’s, rendering 

terrestrial gait patterns ineffective. Consequently, simulating 

low-gravity conditions during training is essential for 

enabling robots to develop adaptive locomotion strategies. 

To address this, we investigated lunar locomotion using the 

G1 robot within the Gewu Playground simulation 

framework, yielding preliminary insights into effective 

movement approaches. 

(1) Control Architecture 

We employ the control architecture provided by Gewu, 

which originates from the instruction learning method we 

proposed earlier. Here, we examine it from an alternative 

perspective and can regard it as a hybrid neural network, as 

illustrated in Figure 28. The upper part of this architecture is 

a conventional learnable neural network, whose input is the 

robot’s state, and its weights are updated by the 

reinforcement learning algorithm during training. The lower 

part is a temporal network, with time variables as its input. 

It operates as a preset function solely dependent on time, 

directly injecting open-loop actions into the robot. These 

actions remain frozen and are not updated during training. 

The functions of these two networks are complementary, 

with the temporal network being interpretable and the state 

network being learnable. By integrating these two networks, 

efficient learning can be achieved. 

For running and jumping, we only employed different 

temporal networks, while all other components, including 

the reward function, remained exactly the same. For running, 

the temporal network is designed to make the robot’s legs 

alternate in a periodic stepping motion. For the jumping task, 

the temporal network is designed to make the robot’s legs 

bend and straighten synchronously in a periodic manner. 

We use the same reward 
a b vr r r r= + +  for both running 

and jumping gaits (only difference is the feedforward 

signal). Each component of the reward is  

1) 1ar =  is the alive reward. The robot receives this 

reward per time step for not falling. 

2) 0.1 0.1b pitch rollr  = − −  is the balance reward (unit: 

degree), which encourages keeping the body upright. 

3) 2v forward vertical lateral yawr v v v v= + − −  is the velocity 

reward, which encourages the robot to move forward. 

 

Figure 28  The concept of hybrid neural network. 

(2) Locomotion Training 

We utilize Unity Terrain Editor to construct the lunar 

surface terrain, leveraging its powerful functionality that 

allows for the intuitive creation and modification of 

large-scale terrains through tools like height mapping, 

texture painting, and rock placement. Given the unique 

characteristics of the lunar surface—such as its cratered 

landscape, dramatic undulating terrain with steep slopes and 

deep depressions, and uniform regolith texture—the Terrain 

Editor enables us to precisely replicate these features by 

adjusting elevation details, applying realistic lunar textures, 

and simulating lighting conditions to achieve an authentic 

lunar environment. 

We selected a specific point on the constructed lunar 

surface as the starting position for the robot. During training, 

we created 24 replicas of the robot, each with a randomly 

chosen yaw angle (moving direction) as shown in Figure 29, 

which allows the robots to experience as many diverse 

ground conditions as possible. Using a simulation time step 

of 0.01 seconds, we reset the robots to the starting position 

every 10 seconds. We trained the robots for 10 million steps 

each on both the running and jumping tasks, with each task 

requiring a simulation duration of 27.78 hours, while the 

actual training time consumed was only 1.67 hours. The 

reward curves are depicted in Figure 30. It can be observed 

that the reward for running rises more rapidly and reaches a 

higher final value. This may suggest that on the lunar 

surface, running enables the robot to move faster and with 

greater stability. 
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Figure 29  Locomotion training on simulated lunar surface. 

 

Figure 30  The reward curves. 

 

(3) Performance Evaluation 

To evaluate the performance of the derived locomotion 

policy, we had two robots perform running and jumping 

respectively, and recorded their motion trajectories as 

shown in Figure 31. It can be observed that the robot is 

capable of jumping to significant heights on the lunar 

surface, and its running gait also differs from that on Earth 

(which is more evident in the supplementary video). For 

quantitative assessment of locomotion performance, we 

instructed the robot to move continuously in a straight 

direction until it lost balance and fell, recording the 

horizontal distance traveled. We selected forward directions 

at 30-degree intervals, conducting three trials per direction 

and averaging the results. The findings are presented in 

Figure 32. As shown, the running policy consistently 

outperformed the jumping policy in terms of travel distance 

across all directions, indicating that running remains a more 

efficient and stable mode of locomotion on the lunar 

surface. 

 

Figure 31  Moving trajectory visualization. 

 

Figure 32  Locomotion performance comparison. 

S6  Conclusions 

This paper introduces Gewu Playground, a versatile, 

open-source robot simulation platform built on Unity that 

supports a wide range of embodied intelligence research, 

including locomotion, manipulation, and autonomous 

navigation. Its key innovations include enhanced Sim2Real 

capabilities through ROS2 integration, adjustable gravity 

fields, and terrain tools for modeling extraterrestrial 

environments like lunar and Martian surfaces, enabling 

rapid prototyping and experimentation across diverse robot 

morphologies. A case study on lunar locomotion 

demonstrated its ability to train adaptive movement 

strategies for humanoid robots, revealing that running 

policies outperformed jumping in stability, providing 

valuable insights for future lunar exploration missions. 

Gewu Playground represents a significant advancement 

by offering a unified, user-friendly framework for both 

traditional and learning-based robotic research across 

terrestrial and extraterrestrial scenarios, aligning with global 

space initiatives. Looking ahead, plans include enhancing 

physics modeling, expanding multi-agent simulations, and 

improving cross-platform compatibility, while fostering a 
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vibrant research community through comprehensive 

documentation and resources. By lowering technical 

barriers, Gewu Playground aims to empower a broader 

range of researchers to contribute to the next generation of 

intelligent robotic systems for Earth and beyond. 

This work was supported by the Shanghai “Science and Technology 
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