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A Comparison Experiments375

Figure 6: Comparative analysis of methods

To demonstrate our method’s effectiveness, we compared it with RMA, MLith, Dual-History, and376

the baseline (Figure 6)[31, 20, 32]. Comprehensive experiments in complex environments show that377

while each method has strengths, ours excels in robustness, especially when perception fails. Our378

approach is superior in obstacle avoidance and climbing, where other methods often fail without379

external perception support, as shown in Table 3.380

These results highlight our method’s efficiency, applicability, and adaptability in real-world applica-381

tions, enhancing robot autonomy and safety in dynamic environments.382

Table 3: Performance Comparison
Method Up Stair Success Down Stair Success Discrete Success Stair XMD Discrete XMD

Ours 97% 100% 90% 19.97 17.04
Ours w/o VAE 87% 100% 90% 16.42 14.99

MLith 0% 100% 84% 9.4 14.61
Dual-History 0% 100% 82% 10.9 13.77

Baseline 0% 100% 76% 7.8 11.53

B Ablation Studies383

We conducted ablation experiments from multiple angles to examine the effectiveness of our policy384

in various aspects. The main ablation experiments we performed were:385

386

• Without VAE and cooperation regularization.387

• Without pre-training the blind policy in the first stage.388

• Our method with KL adaptive learning rate.389

The experimental results are shown in Figure 7. We found that both the VAE and our regularization390

term contribute to improving the final performance. Additionally, without the pre-trained model,391

training often fails, likely due to the difficulty in converging when training multi-agent systems.392

Moreover, this multi-agent training approach is very sensitive to the learning rate; an excessively393

high learning rate or adaptive adjustment of the learning rate can easily cause gradient explosion.394

C Outdoors Experiments395

We tested our controller across various outdoor terrains, which included actions such as climbing396

and dodging in complex terrains using perception, as well as navigating through grass, slopes, soft397

soil, and steps in cases where perception suddenly failed, as illustrated in Figure 8 and based on398

methodologies described by Li et al. [31].399
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Figure 7: Rewards of Different Strategies Over Training Steps

Figure 8: Performance of Robot in Various Terrains.

D Reward Functions400

We used the reward function as shown in Table 4, where the Task reward guides the robot to track the401

desired speed and complete motions on various terrains. Our setting for the regularization reward402

refers to Long et al. [33]; Kumar et al. [32];Agarwal et al. [20]; Cheng et al. [4]. Through extensive403

training trials, we optimized our reward weight settings to ensure that the robot moves in a relatively404

ideal manner.405
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Table 4: Reward Functions

Reward Type Equation Weight
Task Reward

Linear Velocity Tracking exp

{
−∥vcmd

xy −vxy∥2

2σ

}
1.5

Angular Velocity Tracking exp

{
− (ωcmd

yaw−ωyaw)2

σ

}
0.5

Linear Velocity Z v2z -1.0
Angular Velocity XY ω2

x + ω2
y -0.1

Regularization Reward

Z Velocity v2z -1.0
X & Y Velocity ∥ωxy∥22 -0.1

Orientation ∥g∥22 -0.7
Dof Acceleration

∑12
i=1 q̈

2
i −1.5× 10−7

Collision rCollision(7) -20.0
Action Rate ∥at − at−1∥22 -0.11

Delta Torques
∑12

i=1(τt − τt−1)
2 −1.0× 10−7

Torques
∑12

i=1 τ
2
t -0.00001

Hip Position rPos(6) -0.8
Dof Error

∑12
i=1(q − qdefault)

2 -0.04
Feet Stumble |F hor

feet| > 4× |F ver
feet| -2

Termination − -5
Dof Position Limits

∑12
i=1 (q

out
i , qi > qmax ∨ qi < qmin) -13.0

E Training Details406

Robot Domain Randomizations: During the training process, we utilized the following domain407

randomization parameters to enhance the robustness of our policy. The range of randomization was408

referenced from Long et al. [33]; Wu et al. [34]. In actual robots, factors such as communication409

delays can lead to action execution delays of approximately 20ms. Therefore, domain randomiza-410

tion of action delays during robot training significantly improved the real-world performance of the411

robots.412

Table 5: Robot Domain Randomizations

Parameter Range [Min, Max]
Base Mass [0,3] × default kg

CoM [-0.2,0.2] × default m
Ground Friction [0.6, 2.0]
Motor Strength [0.8, 1.2] × default Nm

Joint Kp [0.8, 1.2] × default
Joint Kd [0.8, 1.2] × default

Initial Joint Positions [0.5,1.5]×default
System Delay [0,20] ms

Robot Pushing Interval 8s
Push Velocity XY [0, 0.5]m/s

Heightmaps Domain Randomizations: We utilize the ‘Fast lio’ odometer[35] and the method413

from P. Fankhauser and M. Hutter’s[24] to construct the elevation map. Due to inherent random414

errors typically associated with laser odometry in practical deployments, we have implemented do-415

main randomization for both the elevation map and the z-axis height of the robot’s base.416
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Table 6: Heightmap Domain Randomizations

Parameter Range [Min, Max]
Height map updates delay 100ms

Robot base Z Noisy [-0.05,0.05] m
Height Gaussian Noisy [-0.02, 0.02] m

Height Spike Noisy Proportion 5%
Height Spike Noisy [0.1, 0.5]

Terrains Setting:We have designed a training environment containing six different types of terrains:417

slopes, stairs, discrete obstacles, pits, gaps, and pillars. The first three terrains are relatively easier for418

robot navigation, while the latter three require more reliance on external perception for anticipation.419

• Phase One: Blind Policy Training420

Table 7: Terrain Parameters and Proportion in Blind Policy Training

Terrain Proportion Parameters
Slope 30% Inclination: [0, 40]
Stairs 60% Step Height: [2cm, 15cm]

Discrete Obstacles 10% Obstacle Height: [3cm, 18cm]

• Phase Two: Advanced Perceptual Policy Training421

Table 8: Terrain Parameters and Proportion in Advanced Perceptual Policy Training

Terrain Proportion Parameters
Slope 10% Inclination: [0, 40]
Stairs 60% Step Height: [2cm, 15cm]

Complex Terrain 30%
Pit: [0.1m, 0.45m];

Gap: [0.15m, 0.45m];
Pillar: size [0.4m, 0.6m], center distance [1.6m, 1.4m]

Hyperparameters: Tables 9 and 10 list the hyperparameters used during our two-stage training422

process. It is important to note that multi-agent training, especially with MAPPO, is quite sensitive423

to hyperparameter settings, for which we referred to the settings recommended in Yu et al. [15]. We424

observed that the learning rate particularly impacts multi-agent training, where an excessively high425

learning rate can lead to issues such as gradient explosion.426

• Phase One: Blind Policy Training427
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Table 9: PPO Parameters in Blind Policy Training

Parameter Value

Discount factor 0.99
GAE discount factor 0.95
Timesteps per rollout 21
Epochs per Rollout 5

Minibatches per Epoch 4
Entropy Bonus 0.01

Value Loss Coefficient 1.0
Clip range 0.2

Learning rate KL Adaptive Learning Rate
Desired KL Divergence 0.01

Environments 4096
Policy control frequency 50hz
PD controller frequency 200hz

Using history encoder frequency 20
Action Penalty Coefficient 0.1

• Phase Two: Advanced Perceptual Policy Training428

Table 10: PPO Parameters in Advanced Perceptual Policy Training

Training Parameter Blind Policy Perceptive Policy

Discount factor 0.99 0.99
GAE discount factor 0.95 0.95
Timesteps per rollout 21 21
Epochs per Rollout 5 5

Minibatches per Epoch 4 4
Entropy Bonus 0.01 0.01

Value Loss Coefficient 1.0 1.0
Clip range 0.2 0.2

Learning rate 1× 10−5 1× 10−4

Environments 4096 4096
Using history encoder frequency 20 None

Action Penalty Coefficient None 0.01

F Sim2Real Details429

In sim2real deployment, our lidar and robot parameters, as shown in Table11, are based on configu-430

rations recommended by Agarwal et al. [20].431

Table 11: Sim2real Parameters

Parameter Value

Radar relative to base coordinates (xyz rpy) [-0.33, 0, -0.35, -0.1, -0.55, 0]
Point cloud clipping height [-0.5m, +0.5m]

Elevation map update frequency 50Hz
Other coefficients for elevation maps size: 3m × 3m, resolution: 0.05m

Odometer update frequency 10Hz
Blind Policy frequency 50Hz (synchronized with Perceptive Policy)

Perceptive Policy frequency 50Hz (synchronized with Blind Policy)
PD controller frequency 1kHz

Joint Kp 40
Joint Kd 40
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