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Figure 1: We conducted a long-distance (250m) test on a controller based on multi-brain collabo-
rative. At the beginning of the map, the robot relied on height-map and proprioception to traverse
through terrain. During the test, we simulated a scenario where the lidar suddenly malfunctioned
(by covering it with a orange bag). The robot did not experience any mode crashes and was still able
to handle complex terrains effectively.

Abstract: In the field of locomotion task of quadruped robots, Blind Policy and1

Perceptive Policy each have their own advantages and limitations. The Blind Pol-2

icy relies on preset sensor information and algorithms, suitable for known and3

structured environments, but it lacks adaptability in complex or unknown environ-4

ments. The Perceptive Policy uses visual sensors to obtain detailed environmental5

information, allowing it to adapt to complex terrains, but its effectiveness is lim-6

ited under occluded conditions, especially when perception fails. Unlike the Blind7

Policy, the Perceptive Policy is not as robust under these conditions. To address8

these challenges, we propose a Multi-Brain collaborative system that incorporates9

the concepts of Multi-Agent Reinforcement Learning and introduces collaboration10

between the Blind Policy and the Perceptive Policy. By applying this multi-policy11

collaborative model to a quadruped robot, the robot can maintain stable locomo-12

tion even when the perceptual system is impaired or observational data is incom-13

plete. Our simulations and real-world experiments demonstrate that this system14

significantly improves the robot’s passability and robustness against perception15

failures in complex environments, validating the effectiveness of multi-policy col-16

laboration in enhancing robotic motion performance.17
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1 Introduction19

What happens if a robot suddenly loses its perception? Can it maintain its previous stable motion?20

In natural environments, the sensory systems of humans and animals can sometimes experience21

temporary or permanent impairments, such as “dark adaptation” phenomenon when moving from a22

bright to a dark environment. In these situations, humans and animals can rely on past experiences23

to immediately switch to a state of motion without sensory input, ensuring safe movement.24

For humans, this ability stems from two main sources. First, the human brain has a strong adap-25

tive and memory capacity. When the perceptual system fails for a short period of time, the brain26

will automatically call upon memories and experiences to compensate for the perceptual deficit.27

Secondly, the human motor control system has a high degree of redundancy and multisensory in-28

tegration. For example, when vision fails, the proprioceptive and vestibular systems enhance their29

role in maintaining balance movement.30

In the motion tasks of bipedal and quadrupedal robots, sensory systems may fail due to incomplete31

information or hardware malfunctions. These robots rely on various sensors to gather environmental32

data, such as LiDAR, cameras, and ultrasonic sensors. However, the effectiveness of these sensors33

can be limited in low-light or adverse weather conditions, or they may fail due to physical dam-34

age or signal disruptions. Therefore, researching how to maintain stable robot motion under these35

unfavorable conditions is a challenge in current studies.36

In locomotion tasks, blind policies and perceptive policies each have their advantages and limita-37

tions [1]. Blind policies rely on sensors and preset algorithms for movement, requiring no visual38

input [2, 3, 4, 5]. Although they are fast and consume fewer resources, their adaptability in com-39

plex or unknown environments is limited, and they have weaker obstacle recognition abilities and40

generalizability. Perceptive policies use visual sensors to obtain detailed information about the en-41

vironment, enabling robots to adapt to complex terrains [6, 7, 8]. However, in less than ideal visual42

conditions or in known and structured environments, perceptive policies may not be as efficient as43

blind policies. Researching how to effectively merge these two policies to cope with complex and44

changing environments is an equally challenging research issue.45

Addressing the challenges mentioned, this study integrates Multi-Agent Reinforcement Learn-46

ing (MARL) [9, 10] to propose the concept of Multi-Brain Game Collaboration. We envision a47

quadruped robot system integrating multiple policies to form a collective “brain” with each pol-48

icy tailored to different input policies. Specifically, we explore the interaction between a Blind49

Policy, independent of perceptual input, and a Perceptive Policy that utilizes external information.50

This model excels in scenarios with incomplete observational data or impaired sensory capabilities,51

accurately simulating and analyzing the robot’s interactions with its environment. This approach52

enhances decision-making and adaptability in complex environments.53

The primary contributions of this research are as follows:54

• A Novel Multi-Brain Game Collaboration System: This study introduces and success-55

fully implements a multi-brain game collaboration system. In this system, each policy or56

“brain” independently and collaboratively optimizes decisions for different tasks. This de-57

sign mimics the division of labor and cooperation in biological neural systems, significantly58

enhancing decision-making efficiency and precision.59

• Integration of Blind and Perceptive Policies: The research thoroughly analyzes the com-60

bination of Blind Policies with Perceptive Policies. This collaborative policy provides an61

innovative approach for flexible movement in complex environments.62

• Enhanced Mobility in Complex Environments: Through the non-zero-sum game [11]63

between blind and perceptive policies, this policy allows the robot to make accurate and64

effective motion decisions, even with incomplete information or limited perception.65
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2 Related work66

Multi-Agent Reinforcement Learning In the field of Multi-Agent Reinforcement Learning67

(MARL), there are generally three learning paradigms: centralized learning, independent learning,68

and Centralized Training with Decentralized Execution (CTDE) [12]. Among these, CTDE effec-69

tively combines the advantages of centralized learning with the flexibility of decentralized execution70

MADDPG [13] is a typical representative of the CTDE paradigm, employing an actor-critic frame-71

work. However, as an off-policy algorithm, MADDPG requires extensive memory storage to save72

previous experiences and may not perform as stably in dynamic environments as on-policy algo-73

rithms. MATD3 [14], a multi-agent version of TD3, enhances the stability of multi-agent cooper-74

ation through double Q-learning and delayed policy updates, but this also increases computational75

complexity, especially in large-scale multi-agent environments, and is extremely sensitive to hy-76

perparameters, which may require extensive tuning and experimentation in practical applications to77

achieve optimal performance.78

MAPPO [15], for the first time, effectively extends the single-agent PPO algorithm to a multi-79

agent environment, becoming an on-policy strategy that can handle complex multi-agent collabo-80

rations while maintaining the stability and efficiency of policy updates. MAPPO not only retains81

the advantages of PPO but also successfully addresses the collaboration problems in multi-agent82

environments. Its application on the SMAC platform demonstrates its high sample efficiency and83

consistency of policies [16].84

Blind Policy & Perceptive Motion Policy In enhancing the adaptability and motion performance85

of quadruped robots in complex environments, current research explores three primary policies. The86

first policy, termed the blind policy, relies on the robot’s proprioceptive history, primarily utilizing87

forelimb probing, to estimate terrain [3, 5, 2]. This policy faces limitations in complex or unknown88

environments due to its weak obstacle recognition and generalization capabilities. The second policy89

uses a holistic control approach based on external sensory inputs to gather environmental details,90

helping the robot plan movements and navigate complex terrains [17, 18, 19, 20, 21]. However, this91

often involves isolated end-to-end network architectures without testing for sensor reliability. The92

third, a composite policy [22, 23] integrates blind and visual policies into a synergistic mechanism,93

quickly adapting to sudden failures in external perception systems.94

In sim2real applications for vision-based motion controllers using reinforcement learning, two main95

approaches are prevalent: end-to-end training with depth or RGB images, effective in quadrupedal96

robots, and using elevation maps [24, 25] or height scans from a Global Reference Frame. The latter97

provides precise terrain information, enhancing adaptability and performance in complex environ-98

ments. Compared to traditional images, elevation maps mitigate poor visual conditions, improving99

navigation and decision-making [26, 27]. Furthermore, LiDAR offers high precision and reliability100

under low light or visual occlusion, with its point cloud data converted into elevation maps providing101

rich 3D terrain details, crucial for obstacle detection and terrain analysis.102

To the best of the authors’ knowledge, there has been no research combining multi-agent reinforce-103

ment learning algorithms such as MAPPO to achieve non-zero-sum games between blind policies104

and perceptive policies. Our approach can accurately simulate and analyze the complex interactions105

between the robot and the environment, even under conditions of incomplete observation data or106

sensory loss, thereby enhancing the robot’s motion performance in various environments.107

3 Method108

3.1 Task Formulation109

In the locomotion task of a quadruped robot, we define a process that combines a blind policy and110

an external perception-based policy to handle complex environments. Specifically, the quadruped111

robot can flexibly navigate various obstacles such as highlands, gaps, obstacles, and stairs when112
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Figure 2: Two-stage multi-brain game collaborative training framework.

external perception (e.g., LiDAR elevation maps) is functioning properly. However, when external113

perception suddenly fails, the quadruped robot, although unable to navigate terrains such as gaps,114

should still retain the capability to traverse complex terrains like stairs and ramps.115

We have designed a two-stage training approach, as illustrated in Figure 2. In the first stage, a116

training mode without external perception is used, involving only a blind policy. In the second117

stage, a multi-agent approach is employed, incorporating external perception and simultaneously118

training both the blind policy and a perceptive policy with perception capabilities. The collaboration119

between these two policies is guided by a terrain reconstruction error regularization term. This120

ensures that our robot can effectively traverse terrains both with and without perception.121

3.2 Base Set122

Theorem In complex 3D environments, quadruped robots must maintain stable navigation and123

locomotion even when external perception capabilities fail. To achieve this objective, we describe124

the locomotion problem of quadruped robots using a Partially Observable Markov Decision Process125

(POMDP) [28, 29].126

The POMDP framework effectively models decision-making scenarios where information is incom-127

plete, defining key elements such as states, actions, observations, and rewards. In this model, the128

environment at time step t is represented by a complete state xt. Based on the agent’s policy, an129

action at is performed, resulting in a state transition to xt+1 with a probability P (xt+1 | xt, at). The130

agent then receives a reward rt and a partial observation ot+1. The aim of reinforcement learning131

here is to identify a policy π that maximizes the expected discounted sum of future rewards:132

J(π) = Eπ

[ ∞∑
t=0

γtrt

]

Action Space & State Space The action spaces for the blind policy and perceptive policy are133

respectively ablindt ∈ R12 and apercept ∈ R12, representing the offset from the default posi-134

tion for each joint. The critic networks for both policies observe the global state scritict =135

[ot, vt, et, ht, a
percep
t , ablindt ]T , which includes proprioceptive observations ot, estimated linear ve-136

locities v̂t, and latent variables et such as body mass, center of mass position, friction coefficients,137

and motor strength. These global observations are crucial for the second phase of training, helping138

the critic network make balanced decisions during the interactions between the two policies and139

preventing training collapse due to excessive competition.140

For the actor networks, the state space for the blind policy includes proprioceptive observations141

ot, estimated linear velocity v̂t, and latent variables et. Additionally, aligning with the multi-agent142

game theory approach, the state space for the blind policy also incorporates the output from the143

Perceptive Policy apercept , expressed as sblindt = [ot, v̂t, et, a
percep
t ]T . Similarly, the state space144
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for the Perceptive Policy is spercept = [ot, ht, a
blind
t ]T , where ht represents the local elevation map145

centered around the robot.146

During the first phase of training for the Blind policy, we employed the Regularized Online Adap-147

tation (ROA) method [30] to estimate the explicit observations v̂t and the latent variables et. In this148

phase, apercept was set to zero. In the second phase of training, the final action at = apercept +ablindt .149

3.3 First Stage150

In the first stage of training, we primarily developed a proprioceptive motion system for the151

quadruped robot, aimed at enabling the robot to traverse various complex terrains such as uneven152

slopes, stairs, and discrete terrains without direct visual or elevation map input to the policy. During153

this phase, the output action item for the perception policy was set as a 12-dimensional zero vector,154

ensuring that the blind policy operates without interference from other agents’ outputs. Our blind155

policy, inspired by the ROA training framework, uses only current proprioceptive inputs and the156

action outputs of other agents at time t to estimate the robot’s real-time privileged information, such157

as speed. This approach does not require a long temporal window, allowing the network to estimate158

the robot’s state based solely on its current status and actions. Additionally, the training utilized an159

asymmetric Actor-Critic structure to better evaluate the quality of the actions output by the Actor.160

For the robot’s elevation map, we trained a Variational Autoencoder (VAE) model primarily to mem-161

orize the terrains encountered by the blind policy and to compute regularization terms for action162

constraints in the subsequent training phase.163

3.4 Second Stage164

In the second stage of learning, we introduced a multi-agent learning approach, utilizing a non-zero-165

sum game strategy to optimize the external perception controllers for quadruped robots. Unlike166

traditional single-policy approaches such as parkour, this method allows for adaptation when one167

controller fails, as other controllers can detect and adjust their actions, enhancing the system’s ro-168

bustness. Within the multi-agent framework, the gradients for each controller are updated indepen-169

dently, facilitating task separation and allowing each controller to focus on specific tasks, thereby170

improving the overall adaptability of the system. Additionally, this model supports ”hot-swapping”171

of the perception system, enabling the robot to move based on sensory data when available and to172

continue proprioceptive movement without malfunction when perception is unexpectedly lost.173

The primary implementation policy is as follows: initially, load the pre-trained model of the single-174

agent blind policy and activate these models in the second phase to utilize the actual outputs from175

the perceptive policy. Inputs to the perceptive policy include proprioceptive data, outputs from the176

blind policy, and elevation map information, primarily adjusted for terrain. The robot’s final actions177

are a combination of perceptive and blind actions. This framework ensures that during training, the178

perceptive and blind policies interact and collaborate to optimize movement. All networks use the179

CTDE approach with MAPPO [15] updates, where each agent’s Critic network shares all environ-180

mental information, including the inputs and outputs of other agents, during training, while each181

operates independently during execution. The loss calculations and updates for the blind policy182

remain as in the first phase, while the perceptive policy’s loss includes surrogate loss, value loss,183

entropy loss, and a Reconstruction Error Regularizer. The purpose of the regularization term is to184

encourage the Percep policy to minimize actions when encountering terrain similar to those han-185

dled by the blind policy, promoting cooperation between the two policies and reducing excessive186

competition.187

3.5 VAE & Perception Cooperation Constraint Regularization188

In the first stage, we primarily trained the quadruped robot to navigate slopes, steps, and discrete189

obstacles without relying on external perception. These terrains were chosen because they enable190

the robot to learn fundamental locomotion skills and develop robust capabilities. Steps, in particular,191
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significantly improve the robot’s ability to lift its legs and react to tripping, thereby enhancing overall192

mobility. We believe these terrains exemplify the types of environments a robot can navigate without193

perception in real-world scenarios. We designed a Variational Autoencoder (VAE) to encode and194

decode these features, with the VAE being updated using MSE and KL divergence during the first195

stage.196

In the second stage, we introduced more challenging terrains, such as highlands, gaps, and pil-197

lars, which are difficult for the robot to navigate using only the Blind Policy trained in the first198

stage. Therefore, it must rely on the Percep policy with external perception input for compensa-199

tion. However, the complexity introduced by Multi-Agent systems can lead to policies converging200

to local optima, with the blind policy and Percep policy potentially competing against each other,201

hindering coordinated control. To address this, we introduced a perception cooperation constraint202

regularization term based on elevation maps. This term helps ensure that if the current elevation203

map reconstruction error, as produced by the VAE, is below a threshold, indicating familiarity with204

the terrain, the regularization term increases with the Percep policy’s output, limiting its action. If205

the reconstruction error exceeds the threshold, indicating unfamiliar terrain, the regularization term206

is set to zero, encouraging the Percep policy to compensate.207

Specifically, in the second stage, the robot’s current elevation map hij is input into the VAE,208

which reconstructs the elevation map ĥij . The reconstruction error is then calculated as Ei =209

1
n

∑n
j=1(ĥij − hij)

2, where i represents the i-th sample in the batch, j represents the index of the210

dimensions of the elevation map and action, and n represents the dimension of the elevation map.211

Based on the reconstruction error and the threshold, we define the penalty factor:212

Ii =
{
0 if Ei > τ

1 if Ei ≤ τ

This means that when the reconstruction error exceeds the threshold, the regularization term is set213

to 1, otherwise it is 0. The perception cooperation constraint regularization term is then introduced214

as:215

Pi =
1

m

m∑
i=1

Ii
k∑

j=1

a2ij

where k represents the dimension of the action, and m represents the batch size. Finally, the to-216

tal loss function consists of the surrogate loss, value function loss, policy entropy, and the action217

regularization term:218

L = Lsurrogate + λvLvalue − λeH(π) + λaPi

4 Experimental Results219

4.1 Experiment Setup220

We used the Unitree Go2 robot as our experimental subject, which features 12 degrees of freedom221

in its legs. Utilizing a single NVIDIA RTX 4090 GPU, we simultaneously trained 4096 domain-222

randomized Go2 robot environments in Isaac Gym. During training, we employed PD position223

controllers for each joint, with both the Blind Policy and Perception Policy running at a frequency224

of 50 Hz. The elevation map update rate was set to 10 Hz, and the robot’s control signal delay225

was 20 ms. Additional domain randomization parameters and training specifics are detailed in the226

appendix.227

The training terrain comprised six types: ramps, stairs, discrete obstacles, highlands, gaps, and pillar228

terrain. The first three terrains are relatively easier for the robot to navigate, while the last three229

require more reliance on external perception for anticipation. We primarily measured the robot’s230

performance in both simulated and real-world settings under two conditions:231

• The robot’s ability to navigate the tough terrains with the aid of perception.232

• The robot’s capability to traverse the first three terrains when perception is suddenly lost.233
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4.2 Simulation Experiment234

Terrain Passability Experiment: We first tested the survival rate of our policy across three tough235

terrains with varying levels of difficulty. For each terrain and difficulty level, we conducted 100236

environment samples, calculated the success rate four times, and averaged the results. The success237

rate for the Gap and Pit terrains was defined as the robot successfully crossing or climbing over238

the obstacle, while for the Pillar terrain, it was defined as the proportion of environments the robot239

navigated without collisions. As shown in Table 1 , our policy achieved high success rates across240

various tough terrains. The highest difficulty level for each terrain was beyond the scope of our241

curriculum settings, demonstrating the robustness of our algorithm.

Figure 3: Robustness testing In simulation, the perception-based RMA mode collapses when the
height map is corrupted while our policy works well.

Gap Success Rate Pit Success Rate Pillar Success Rate

0.35m 99.3% 0.30m 97.6% obstacle size=0.4 ; distance=1.6 86.7%
0.45m 98.3% 0.40m 97.6% obstacle size=0.5 ; distance=1.5 80.4%
0.55m 91.3% 0.50m 85.0% obstacle size=0.6 ; distance=1.4 65.0%
0.65m 44.3% 0.55m 49.3% obstacle size=0.7 ; distance=1.3 60.7%

Table 1: Success Rates in Tough Terrains

242
Comparison Experiment: We compared our collision estimation and response policy with several243

baselines and ablations as follows:244

• Baseline: Training directly with proprioception and height map.245

• RMA: Employing an Adaptation Module to estimate all privileged observations, but di-246

rectly inputting the elevation map into proprioception.247

• Ours w/o Regularizer: Training without Perception Cooperation Constraint Regulariza-248

tion.249

As shown in Table 2, our method demonstrates the most robust performance under external per-250

ception failure, especially when climbing stairs. Other strategies failed to learn to handle obstacles251

without perception during training, resulting in tripping over obstacles. In contrast, our method can252

easily climb steps, and the MXD indicates that our method can also achieve higher speeds (1 m/s to253

1.6 m/s). Figure 3. shows the effect of our run in simulation.254

4.3 Physical Experiments255

Navigating Complex Terrains with Sensory Input Our policy substantially enhanced the256

quadruped robot’s capability to navigate vertical challenges, such as wooden boxes and low walls.257

In our experiments, the robot was tasked with climbing a 32 cm high wooden box. It adeptly lifted258

its front legs preemptively and elevated its body to surmount the box, as shown in Figure 4. This259

sequence of movements, successfully culminating in the robot climbing over the box, exemplifies260
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Method Up Stair Success Down Stair Success Discrete Success Stair XMD Discrete XMD

Ours 97% 100% 90% 19.97 17.04
RMA 0% 100% 81% 8.2 12.38

Baseline 0% 100% 76% 7.8 11.53
Ours w/o VAE 87% 100% 90% 16.42 14.99

Table 2: we primarily compared the success rates of different methods on stairs and discrete terrains,
as well as the Mean X-Displacement (MXD) for each environment. For this experiment, all elevation
map inputs were set to zero, and we tested 1048 environments over 1000 steps. The stairs had a
width of 0.31 and a height of 0.13, while the maximum height of the discrete terrain was 0.15.
Failure conditions were defined as either the roll or pitch exceeding 1.3, or the robot’s foot getting
stuck and unable to move forward.

the efficacy of our integrated elevation map and perceptual policies in enabling the robot to tackle261

climbing obstacles.262

Figure 4: Robot Climbing a Wooden Box Using Our Policy.

In the obstacle avoidance trials, the robot encountered various obstacles including rocks, wooden263

boxes, and human figures. Leveraging our policy, it quickly recognized a human-shaped obstacle264

through its elevation map, then adeptly adjusted its trajectory, sidestepping to bypass the obstacle265

efficiently and safely, as depicted in Figure 5. This performance underscores our method’s effective-266

ness, particularly noting that despite the absence of y-direction velocity training, the robot adeptly267

maneuvered in the y-direction, showcasing the robustness and adaptability of our approach.268

Figure 5: Robot Avoiding a Person Using Our Policy.

Long-Distance Test with Outdoor Terrain Perception Failure Initially, with effective LiDAR269

elevation map inputs, the robot used a comprehensive policy for movement, efficiently climbing270

16 cm stairs and handling slopes. Subsequently, we deliberately covered the LiDAR, disabling the271

elevation map input, and conducted a long-distance test on unstructured terrains. We tested the272

robot over a 250m path that included dense grass, irregular terrain, soft and slippery grasslands,273

gentle slopes, and stair terrains, where the robot successfully navigated through all (see Figure 1).274

5 Conclusion, Limitations and Future Directions275

We propose the concept of Multi-Brain Collaborative Control based on Multi-Agent systems, estab-276

lishing a training framework that achieves both perceptive motion and robust obstacle traversal in the277

event of perception failure. We tested our system in both simulations and real-world experiments,278

demonstrating the effectiveness and robustness of our algorithm. However, currently, our robot’s279

elevation maps are derived from LiDAR, which heavily depends on the frequency and stability of280

the odometry, and involves significant computational overhead. This greatly affects the stability and281

sustainability of our perceptive policy. Additionally, our perceptive algorithm is still quite sensitive282

to environmental noise. In the future, we aim to replace LiDAR with lighter-weight perception de-283

vices such as cameras and construct local elevation maps without relying on odometry. We will also284

explore how to apply our algorithm to control various legged robots.285
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