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Abstract— Locomotion tasks for humanoid robots are chal-
lenging, especially in complex terrains. Understanding the
physical processes of robot-environment interactions is key to
achieving stable walking for humanoid robots. Since there
is privileged information that the robot cannot directly ac-
cess, the observation states are partially observable. Previous
reinforcement learning(RL)-based methods either reconstruct
environmental information from partial observations or recon-
struct robotic dynamics information from partial observations,
but they fail to fully model the physical processes of robot-
environment interactions. In this work, we propose an end-
to-end reinforcement learning control framework based on
world physical interaction model for Humanoid robots. Our
primary innovation is the introduction of a physical interaction
world model to understand the dynamic interactions between
the robot and the environment. Additionally, to address the
temporal and dynamic nature of these interactions, we employ
the hidden layers of Transformer-XL for implicit modeling.
The proposed framework can showcase robust and flexible
locomotion ability in complex environments such as slopes,
stairs, and discontinuous surfaces. We validate the robustness
of this method using the humanoid robot in simulations, and
quantitatively compare our method against the baselines with
better traversability and command-tracking.

I. INTRODUCTION

Humanoid robots are expected to perform tasks related
to human activities and collaborate with humans, which in-
cludes possessing motion capabilities comparable to humans
and adapting their gaits to various terrain conditions. Al-
though they exhibit superior mobility compared to wheeled
robots in complex terrains, controlling them in scenarios
with discontinuous contact and diverse motion skills remains
challenging. Transitioning natural movements to humanoid
robots still faces long-term technical challenges, including
but not limited to the high degrees of freedom, underactua-
tion, and complex non-linear dynamics of humanoid robots.

Traditional model-based control methods have signifi-
cantly enhanced the locomotion capabilities of humanoid
robots by using physical models to predict robot behavior
[1]–[3]. However, these methods rely on accurate environ-
mental dynamics modeling, which limits their application in
complex terrains. Simplified dynamic models often lead to
conservative movements, restricting the robot’s potential. In
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contrast, RL-based methods [4]–[8] do not rely on detailed
physical modeling and have shown greater flexibility and
adaptability on legged robots. However, for humanoid robots,
these methods can only handle relatively simple environ-
ments and have not yet fully addressed dynamic control
issues in complex terrains.

Environmental information and robot motion information
are essentially information from different domains, and result
in understanding their interactions is challenging. Since
actor networks can only obtain partial observations of the
environment, they generally reconstruct partial observations
into more complete environmental information by incor-
porating historical information or additional observational
data. While these methods can reconstruct environment or
robot dynamics information from partial observations, they
fail to fully characterize the physical interaction processes
between the robot and the environment. To address this issue,
we introduce building world physical interaction model,
which employ self-attention mechanisms to learn compact
representations of historical observation inputs and implicitly
infer latent interaction states by predicting future observation
states.

Our input consists of temporally related historical se-
quence information, and we use the Transformer-XL [9],
which allows the world model to directly access observations
from previous time steps and learn long-term dependencies.
The Transformer structure comprises multiple residual con-
nections and self-attention mechanisms. The self-attention
mechanism has unique advantages in modeling sequential
information because it captures global information in the
sequence without relying on fixed time windows.

We demonstrate the entire framework on the bipedal plat-
form and validate our method. With our approach, the robot
can traverse complex terrain in both simulation. Overall, our
main contributions are:

• We propose a world physical interaction model, repre-
senting the first application of Transformer-XL based
world model framework to humanoid robot tasks. By
integrating it with the actor-critic method, we achieve
enhanced RL exploration capabilities.

• Our approach incorporates time series information into
the critic and leverages the world model for future
predictions, significantly improving the critic network’s
ability to evaluate the robot’s state and facilitating more
globally informed decision-making.

• The simulation experiments demonstrate its superior
traversability and command-tracking performance, fully
showcasing the robustness of the approach.



II. RELATED WORK

A. Blind Legged locomotion

For legged robot locomotion control, model-based meth-
ods are often difficult to generalize in an environment that is
not modeled. Meanwhile, imitation learning [10]–[12] needs
to rely on reference motion trajectories, but morphology and
mass difference between human and robots result in scarce
valid data. In contrast, RL can not only generalize to new
environments, but also does not rely on reference trajectories.
However, RL control also faces the challenge of Sim2Real
Gap and limitation of perception, to solve this problem, there
are a number of approaches [13]–[16]that utilize teacher-
student strategy, with the teacher model receiving complete
information. The output of the teacher model is then used to
supervise the student model. In order to be able to better
estimate privileged information that cannot be observed,
some methods feed richer information such as gait [4]–
[6]the controller, and some methods introduce state estimator
modules [17]–[19], compensating for partial observability by
expanding the state space. Our approach is also intended
to enrich the observation space. However, by integrating a
world model, we can better understand the deeper informa-
tion embedded in the current observations—specifically, the
interaction between the robot and its environment—through
predictions of future observations.

B. World model for humanoid

The initial world model [20] is inspired by how humans
process complex information to form an abstract represen-
tation of the world, understanding key entities and their
interactions, and creating an internal representation of the
world that allows predicting future events and making quick
responses. For various problems that can be addressed using
RL, the Dreamer series algorithms [21]–[23] have system-
atically explored the construction and learning of world
models as well as the optimization of value and policy
functions based on the actor-critic paradigm. Daydreamer
[21] employs online learning, focusing on predicting future
outcomes through experience with the world model and using
these predictions to reduce the trial-and-error process in the
actual environment, thereby improving training efficiency.
The world denoising model [24] addresses the issue of dis-
crepancies between simulation and real-world environments
by utilizing the predictive capability of the world model for
denoising. However, unlike the aforementioned methods, we
innovatively apply the denoising model to abstract implicit
features of the dynamical interaction between the robot
and the environment, leveraging these features for decision-
making and enabling robust locomotion in humanoid robots.

C. Transformers for humanoid

The Transformer [25] excels in handling long sequences
and is compatible with various modalities and their com-
binations. It has achieved remarkable results in fields such
as vision [26]–[28] and natural language processing [29]–
[32]. In RL, decision-making methods such as Trajectory
Transformer [33] and Decision Transformer [34] have been

developed. For legged robot motion control tasks, [15]
successfully deployed a control strategy to a quadrupedal
robot by leveraging Decision Transformer and a two-stage
knowledge distillation approach. [35] trained RL algorithms
with a high-level vision controller to process visual and pro-
prioceptive information and output target linear and angular
velocities for driving lower-level controllers. [36], [37] used
Transformers as feature extractors to achieve simple walking
for humanoid robots. However, a common challenge in
control tasks is that Transformers cannot capture the relation-
ships between different segments, whereas our method using
Transformer-XL establishes connections between different
segments, avoiding information fragmentation.

Methods such as [38]–[42] combine Transformers with
world models. Through this integration, We introduce a novel
humanoid locomotion framework, in our method, transform-
ers enable the world model to access past state information
directly, rather than relying on compressed information, thus
reducing the data compression process.

III. METHOD

A. Preliminary

1) Reinforcement learning task: In this paper, we for-
mulate the problem of humanoid locomotion in complex
terrain as a Partially Observable Markov Decision Process
(POMDP) with discrete time steps t ∈ N, defined as M =
(S,A,O,T,Z,R,γ), where S, O, and A denote the state,
observation, and action spaces, respectively.

The state transition probability T (s′,a,s) represents the
probability of transitioning to a new state s′ after executing
action a in state s, defined as T (s′ | s,a) = P(s′ | s,a). The
observation probability Z(o | s′,a) represents the probability
of observing o after executing action a and transitioning to
a new state s′. The reward function R(s,a) represents the
expected reward obtained after executing action a in state
s, and the discount factor γ ∈ [0,1) is used to weigh the
relative importance of immediate rewards and future rewards.
The ultimate goal is to find a policy π that maximizes the
expected discounted reward:

J(π) = Eπ

[
∞

∑
t=0

γ
tR(st ,at)

]
. (1)

2) Task description: In our world physical interaction
model, we decompose the locomotion task in complex envi-
ronment into the following processes:

• Dynamical Environment Understanding: In complex
environmental locomotion tasks, robot’s understand-
ing of its physical interactions with the environment
determines its subsequent decisions. This process is
highly dynamic and strongly temporally correlated,
encompassing the relationship between environmental
information and the robot’s dynamic data, as well as
the memory of these two types of information over
historical time series and the robot’s perception of
environmental changes.



Transformer - XL

Actor

Critic

…

Transformer - XL

…

… …

…

…

value

S
u

p
erv

ised
 L

ea
rn

in
g

Observations with 

Privileged Information

Observations 

with Corrupted 

Information

1. Base linear vel

2. PD Gains

3. External force

4. Contact mask

1. Friction

2. Height map

1. Clock inputs

2. Commands

3. Dof_pos

4. Dof_vel

5. Base angular vel

6. Base euler angle

0 e p

Fig. 1: Overview of world physical interaction model

Fig. 2: Information about the humanoid
robot.

• Dynamic Prediction: Dynamic prediction plays a piv-
otal role in enabling the robot to interact effectively with
its environment. By leveraging interaction information,
the robot can ’imagine’ the complete states of the
physical world and itself that would result from each
possible action. This capability allows the robot to
anticipate future dynamics and evaluate the potential
value of its actions in a proactive manner. Such dynamic
estimation not only enhances the robot’s adaptability to
diverse scenarios but also strengthens the generalization
of its walking capabilities, particularly in complex and
unpredictable environments.

• Observation Space Expansion: The robot can only
access partially observable states of the environment.
However, partial observations can only capture local
information and fail to comprehensively represent the
full complexity of the environment, making them insuf-
ficient to support the robot’s decision-making require-
ments in complex environments. To learn comprehen-

sive information, the policy network needs to expand
the observation space based on historical observation
sequences and dynamic predictions, ensuring that each
extended state provides sufficient information to com-
pensate for partial observability.

B. World Physical Interaction Model
1) Overview: Our proposed world physical interaction

model method includes a dynamics model and a physical
interaction regression model. We adopt an asymmetric actor-
critic architecture, where the critic network combines with
the dynamics model. The critic takes the historical observa-
tion state information sH

t as input and compresses it into a
hidden variable sequence hH

t . The dynamics model predicts
future state information ŝt+1, while the critic estimates the
state value function. The actor network takes partial historical
observation information [ot ,at−1]

H as input and compresses
it into a hidden variable sequence zH

t . The actor hidden
variables are supervised by the critic hidden variables to learn
more interaction information. The actor network relies on

(e)(d)(c)(b)(a)

Fig. 3: The robot demonstrates robust locomotion across various terrains: a slope with an angle of 25° in (a) and (b), a staircase with a height of 10 cm
in (c) and (d), and rough discontinuous surfaces in (e).



the value estimation provided by the critic network to make
decisions. The Transformer-XL architecture allows the world
model to directly access historical observation information
rather than compressed information. Due to its recursive
structure, each time step and previous hidden states together
determine the current hidden state.

Observation Space: The observation space is composed
of the following components:

• pt : Represents partial environment and robot interaction
information, including base linear velocity, PD gains,
external force, and the contact state of the foot end.

• et : Represents environmental information, consisting of
friction and the height map.

• ot : Represents robot dynamics information, containing
periodic signal input, desired velocity commands, joint
position (q), joint velocity (q̇), base angular velocity
(ωxyz), and base Euler angles in the coordinate system
(θxyz).

Action Space: The dimension of the action spaces A
equals the number of actuators. The movement of each
actuator is formulated as the bias between the target joint
position θtarget and the nominal joint position θ0. The robot’s
target joint angle is defined as: θtarget = θ0 + kat , where k is
a scaling coefficient, k=0.25.

2) Dynamics Model: The dynamics model predict the
next time state based on history observation state. Its back-
bone is an aggregation model fψ that compresses the obser-
vation state sH

t into a hidden state sequence hH
t . Using this

hidden variable ht , the dynamics estimation model predicts
the next state ˆst+1. The dynamics model consists of these
components:

Aggregation Model : hH
t = fψ(sH

t )

Dynamics Prediction Model : ŝt+1 ∼ pψ(ŝt+1|ht)
(2)

The aggregation model fψ is implemented as a causally
masked Transformer-XL, while pψ employs a Multilayer
Perceptron (MLP) to produce the output logits, these logits
are subsequently converted into a one-hot representation that
captures discrete categorical variables. Specifically, the out-
put is discretized into 32 categorical variables, each capable
of taking one of 32 possible categories. Transformer-XL
introduces a recurrence mechanism that reuses the hidden
states from the previous batch. This design overcomes the
fixed-length limitation of traditional Transformer models, as
highlighted in [43], allowing the model to process longer
sequences efficiently. By integrating immediate dynamic
changes from environmental interactions with long-term
dependencies in time series, the model achieves enhanced
predictive accuracy.

3) Physical Interaction Regression Model: We assume a).
the critic can access the full observation of the environment,
b). the hidden variable at time t has learned the historical
observation information before time t. We believe that the
latent variable ht contains physical interaction information,
and the regression model assists the actor network in learn-
ing this information. The regression model incorporates an

aggregation model in (3), which encodes partial observation
information [oH

t ,a
H
t−1] into a hidden variable zH

t .

Aggregation Model : zH
t = fψ(oH

t ,a
H
t−1) (3)

fψ is also implemented as Transformer-XL. Specifically,
as referenced in (5), physical interaction regression model
employs a regression approach that utilizes the complete
observation information provided by the critic network to
guide the actor network in optimizing its latent variables.
This process expands the observation space of the actor net-
work, compensates for the limitations of partial observations,
and enables the agent to better understand environmental
dynamics and interaction relationships.

4) Policy learning: The actor network describes a Gaus-
sian distribution based on the output mean and variance of
the action, and then generates a specific action value by
sampling from this distribution at ∼ π(at |oH

t ). The Critic
network estimates the expected cumulative return Rt under
the current policy at state st : vψ(Rt | st). The key distinction
from previous work lies in the introduction of time sequences
and a world model for future prediction in our critic network
not just actor network. This approach significantly enhances
the critic’s ability to evaluate the robot’s state, thereby
guiding decision-making with a more global perspective.

5) Loss Function: Our loss function includes the dynam-
ics model loss, the reconstruction loss for hidden variable
regression, and the policy optimization loss. In each iteration,
we first update the dynamics model and the PPO module,
followed by optimizing the regression module.

Dynamics Model Loss: Our goal is to ensure that the
dynamics estimation model can accurately predict future
observation state. Inspired by the balanced cross-entropy
loss used in [40], we also calculate the entropy and cross-
entropy. We use the cross-entropy Lent2 of the dynamics
prediction model to prevent the encoder from deviating from
the dynamics model. Entropy Lent1 regularizes the latent
states and prevents them from collapsing into a one-hot
distribution. The dynamics predictor LNLL is optimized via
negative log-likelihood, providing rich learning signals for
the latent states.

LNLL +Lent1 +Lent2 = E

[
T

∑
t=1

− ln pψ(ŝt+1|ht)︸ ︷︷ ︸
predictor

+ α1H(ht))︸ ︷︷ ︸
entropy regularizer

+α2H(st+1, pψ(ŝt+1|ht))︸ ︷︷ ︸
consistency

]
(4)

Hyperparameters α1,α2 are the relative weights of the
terms.

Reconstruction Loss: This loss corresponds to the regres-
sion model described in Section III-B.3, where the latent
variable ht generated by the critic network supervises the
learning of the latent variable zt produced by the actor



network. The mean squared error (MSE) loss we adopt for
this purpose is as follows:

Lreconstruct = MSE(zt ,ht) (5)

Policy Optimization Loss: We use the Proximal Policy
Optimization (PPO) algorithm to optimize the policy. The
loss function primarily consists of a policy loss Lclip and a
value function loss Lvalue The overall training loss is defined
as

L = Lclip +Lvalue +LNLL +Lent1 +Lent2 +Lreconstruct (6)

(a) Mean reward (b) Terrain level

(c) Mean reward (d) Terrain level

Fig. 4: Comparison of different Method. (a) and (b) are compared with
the baseline, oracle, and ablation experiments in terms of terrain levels and
average rewards to demonstrate model performance, while (c) and (d) are
compared with other methods to showcase the superiority of our model.
We adopt curriculum learning [44] for training. Terrain level refers to the
difficulty level of the terrain.

6) Training Details: We use the reward function as shown
in Table I, where the task reward guides the robot to track the
desired speed and complete motions on various terrains and
alive reward mitigates the exploration burden in early period.
Besides, we design comprehensive reward about feet [45],
[4]to guide locomotion through tough terrain and prevent
weird posture. Through extensive training trials, we optimize
our reward weight settings to ensure that the robot moves in
a relatively ideal manner. The domain randomizations and
terrain setting details are in Table II and III.

IV. EXPERIMENTS AND RESULTS

A. Experiment Setting

1) Benchmark Comparision: For a comparative evalua-
tion, the experiments we performed are as follows:

• Oracle: Train the policy with a history of full privileged
observations.

• Baseline: MLP network optimized using the PPO algo-
rithm.

• LSTM: Adopt LSTM as network backbone [46]
• Bert: We implement the policy according to the Hu-

manplus algorithm [36], Compared to Transformer-XL,
the like-Bert structure lacks memory information and
only focuses on the current time window.

TABLE I: Reward Function

Term Equation Weight
Task Reward

alive 1 0.5
xy velocity tracking exp(−|vxy −vcmd

xy |2 ·5) 1.5
yaw velocity tracking exp(−(ωz −ωcmd

z )2 ·5) 1.0
Feet Guidance

swing phase tracking
(force)

∑ f oot [1 −
Ccmd

f oot(θ
cmd, t)]exp(−|f f oot |2/100)

5.0

stance phase tracking
(velocity)

∑ f oot Ccmd
f oot(θ

cmd, t)exp(−|v f oot
xy |2/5) 10.0

raibert heuristic tracking ( p f
xy, f oot −p f ,cmd

xy, f oot(s
cmd
y ))2 -30.0

foot height tracking ∑ f oot(hz, f oot −
h f ,cmd

z )2Ccmd
f oot(θ

cmd, t)
-10.0

Regularization Reward
body height exp(−(hz −hcmd

Z )2 ·1000) -0.2
z velocity v2

z -0.02
foot slip |v f oot

xy |2 -0.04

hip position exp
(
−∑

2
i=1 q2

roll,yaw ·100
)

0.4

feet orientation exp
(
−∑

2
i=1 |θ

f oot
roll,pitch| ·10

)
0.4

feet stumble ⊮
(

maxi(
√

F2
xi
+F2

yi
> 4|Fzi|)

)
-1.0

orientation exp(−|gxy|2 ·10) 1.5
thigh/calf collision 1collision -5.0
joint limit violation 1qi>qmax∨qi<qmin -10.0
joint torques |τ|2 -1e-5
joint velocities |q̇|2 -1e-3
joint accelerations |q̈|2 -2.5e-7
action rate |at | -5e-5
action smoothing |at−1 −at |2 -0.01
action smoothing (2nd
order)

|at−2 −2at−1 +at |2 -0.01

TABLE II: Domain Randomizations and their Respective Range

Parameters Range [Min, Max] Unit
Ground Friction [0.1, 1.5] -
Ground Restitution [0.0, 0.25] -
Body Mass [-2, 5] Kg
Body Com [-0.07, 0.1] Kg
Link Mass [0.8, 1.4] × nominal value Kg
Joint Kp [0.85, 1.15] × 20 -
Joint Kd [0.85, 1.15] × 0.5 -
System Delay [0, 40] ms
External Force interval = 5s velxy = 0.4 -

• Ours w/o dynamics model:The proposed method with-
out dynamics estimation module.

• Ours w/o regression model: The proposed method
without latent variable reconstruction.

• Ours w/o world model: The proposed method without
dynamics estimation module and latent variable recon-
struction.

2) Setups in Simulations: We conduct simulation exper-
iments on the Isaac Gym platform, training 4096 agents in
parallel using domain randomization. We test performance
by comparing the convergence curves of rewards, the conver-
gence curves of terrain levels, and the velocity tracking under
various terrains. The training is conducted on an NVIDIA
V100 GPU with 40 GB of memory. The detailed network
hyperparameters are shown in Table IV.



(a) Discrete plane (c) Rough slope up (d) Stairs up(b) Plane
Fig. 5: Vehicle tracking comparision. We provide the robot with a sinusoidal velocity command and test the average velocity of 100 robots on different
terrains. The Vx error is calculated using the following formula: Vx error = 1

N ∑
N
i=1

(
Vx,command(t)−Vx,i(t)

)2.

Fig. 6: Hidden layers visualization. The figure shows the changes in part
of the hidden layer responses as the robot moves from flat ground to slope
up and back to flat ground. The red line corresponds to the time when the
robot is walking on flat ground, while the yellow line corresponds to the
time when it is slope up.

B. Simulation Results

1) Terrain Passability Experiment: As shown in Fig.3, we
test the upper limit and robustness of our method across
various complex terrains. As shown in Fig. 4, our method
significantly outperforms the baseline in handling complex
terrains compared to the simple MLP structure. Additionally,
our method surpasses even the ”oracle” method, which has
access to privileged information, in terms of the final terrain
difficulty. This demonstrates that the transformer architec-
ture effectively utilizes the robot’s historical information to
enhance decision-making. Our method also outperforms the
ablated version, highlighting the importance of the world

TABLE III: Terrain Setting Range

Parameters Range [Min, Max] Proportion
Stair up [5cm, 12cm] 0.5
Stair down [5cm, 12cm] 0.5
Slope up [0, 0.2] 2.5
Slope down [0, 0.2] 1
Plane - 0.5

Fig. 7: Self-ablation experiments. We conduct three repeated experiments
with different random seeds. The curves represent the average results, with
shaded areas indicating the range between the minimum and maximum
values.

model in understanding dynamic interactions, allowing the
robot to navigate complex terrains more efficiently and sta-
bly. The comparison with other methods further demonstrates
that our approach is more robust and adaptable to different
challenging terrains.

2) Command Tracking Experiment: We also quantita-
tively evaluated the ability of our method to track desired
velocities in complex terrains. As shown in Fig. 5, (a),
(b), (c), and (d) compare the velocity tracking performance



(c) Mean reward (d) Terrain level

(a) Mean reward (b) Terrain level

Fig. 8: The effect of the dimension of hidden layer and the time window
length

TABLE IV: Hyperparameters of world physical interaction model

Parameter Value
Number of Environments 4096
Context window 8
Memory window 8
Batch size 4096 × 24
Discount Factor 0.99
GAE discount factor 0.95
Entropy Coefficient 0.00001
PPO lr 0.0001
α1 5.0
α2 0.01
Transformer blocks 4
Embedding dimension 128
Multi-head attention heads 4
Reconstruction module lr 1×10−6

Dynamic estimator module lr 1×10−6

of different methods across various terrains. The top four
plots show the actual velocity feedback curves as the robot
tracks a continuously changing sine-wave desired velocity,
while the bottom four plots present boxplots of the tracking
errors in the x-direction for different methods. Our method
demonstrates superior tracking performance across various
terrains. In terms of both the upper bound of error and the
median, our method significantly outperforms other methods.
Even though the Oracle has access to foot elevation maps,
our method outperforms Oracle on discrete, plane, and slope
terrains. On stair terrains, which rely on foot elevation data,
our method performs close to Oracle, indicating that the
environmental estimation of our world model is already very
close to the actual elevation map.

3) Latent Layer Analysis: As the robot transitions through
a plane-slope-plane terrain environment, we visualized the
outputs of 4 selected neurons from the 128-dimensional
hidden layer. As shown in Fig. 6, the changes in hidden
layer responses during terrain transitions highlight the robot’s
ability to adapt to varying terrains. These responses reflect
the network’s capability to recognize and respond to terrain
changes, enabling real-time adjustments to the robot’s control

strategy.

C. Ablation experiment

As shown in Fig. 7, we compare our method with the
ablated versions and found that the latent variable regression
part and the future information prediction part influence each
other. Having both components leads to better performance,
which is understandable. The key to our approach lies in
introducing time series through the critic and leveraging the
world model for future predictions. This method enhances
the evaluation capability of the critic network, guiding better
decision-making abilities.

As shown in Fig. 8, we experiment with varying history
length and hidden layer dimensions to verify whether our
parameters achieve optimal locomotion performance and
robustness. The time window determines the context range
the model can observe when handling sequential tasks. A
larger window helps capture long-range dependencies but
increases computational costs. The model’s performance is
similar when the window length is 16 and 8, and significantly
better than other window lengths. The hidden layer size de-
termines the model’s representation capacity, and increasing
the number of hidden layers helps improve the network’s
fitting ability. The performance is similar when the number
of hidden units is 256 and 128, with the model showing
slightly better exploration ability in complex terrains when
the hidden layer size is 128.

V. CONCLUSION

In this work, we propose world physical interaction model,
a novel framework designed to address the challenges of
humanoid robot locomotion in complex environments. Our
framework integrates the world model concept into an asym-
metric actor-critic structure, where the hidden layers of
Transformer-XL implicitly model the dynamic interactions
between the robot and its environment. This approach en-
hances decision-making by leveraging historical sequences
and dynamic predictions to expand the observation space.
We validate the effectiveness of our method through ex-
tensive simulation experiments, demonstrating its ability to
achieve robust and adaptive locomotion across diverse and
challenging terrains. The results highlight the advantages of
incorporating world model-based implicit dynamics repre-
sentation, allowing the robot to efficiently learn environment-
aware control strategies. Future work will focus on improv-
ing model generalization to unseen terrains and exploring
full-body coordination to enable more versatile and natural
locomotion.
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