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2019 Learning agile and dynamic motor skills for legged robots
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Fig. 1. Creating a control policy. In the first step, we identify the physical parameters of the robot and estimate uncertainties in the identification. In the second step, 2~ IE AN

we train an actuator net that models complex actuator/software dynamics. In the third step, we train a control policy using the models produced in the first two steps. Q}E EI:[ S‘ZIZ %ﬂ -U [ I ? ZZ} m H]%
In the fourth step, we deploy the trained policy directly on the physical system. = H
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Fig. 2. Quantitative evaluation of the learned locomotion controller. (A) The discovered gait pattern for 1.0 m/s forward velocity command. LF, left front leg; RF,
right front leg; LH, left hind leg; RH, right hind leg. (B) The accuracy of the base velocity tracking with our approach. (€ to E) Comparison of the learned controller
against the best existing controller, in terms of power efficiency, velocity error, and torque magnitude, given forward velocity commands of 0.25, 0.5, 0.75, and 1.0 m/s.
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Fig. 3. Evaluation of the trained policy for high-speed locomotion. (A) Forward
velocity of ANYmal. (B) Joint velodities. (C) Joint torques. (D) Gait pattem.
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Fig. 4. A learned recovery controller deployed on the real robot. The learned policy successfully recovers from a random initial configuration in less than 3 s.
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Fig. 5. Training control policies in simulation. The policy network maps the current observation and the joint state
history to the joint position targets. The actuator network maps the joint state history to the joint torque, which is used
in rigid-body simulation. The state of the robot consists of the generalized coordinate g and the generalized velocity u. The
state of a joint consists of the joint velocity ¢ and the joint position error, which is the current position ¢ subtracted from
the joint position target ¢*.
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Section S3. Cost terms for training command-conditioned
locomotion and high-speed locomotion tasks

We used a logistic kernel to define a bounded cost function K : R — [—0.25,0)
as

1
Kz)=————. 1
@) = o5 W
angular velocity of the base cost (c,, = —6At)
cwl (|wip — @ip) )

linear velocity of the base cost (c,; = —10At, ¢, = —4At)
ek ([ew - (v — 715)]) 3)

torque cost (¢, = 0.005A¢)
keer ||| 4)

Jjoint speed cost (c;; = 0.03A¢%)
kecj|l6* Vi€ {1,2..,12} )
foot clearance cost (c; = 0.1A¢, py; . = 0.07 m)
kees (e = Praz)l[osealls Vi, g0 > 0,0 € {0,1,2, 3}, (6)
foot slip cost (cs, = 2.0At)
keerollvpeill, Vi, 9, = 0,1 €{0,1,2,3} (7
orientation cost (¢, = 0.4At)
etol[[0,0, =117 — 6| ®)
smoothness cost (¢, = 0.5Af¢)

kccs“Tt—l - 'Tt”2 (9)

Section S4. Cost terms for training recovery from a fall

We use angleDiff : R x R — [0, 7] that computes the minimum angle differ-
ence between two angular positions to define a cost function on the joint positions.
The symbols used in this section are defined in section S1.
torque cost (c; = 0.0005At)

keer |7 (10)

joint speed cost (¢;; = 0.2A%, €550, = 8rad/s)
IF ] > |Cjamazls  Fetjsl|97]]* Vi€ {1,2..12} (11)
joint acceleration cost (c;, = 0.0000005At)
keesal|6°])* Wi € {1,2...12} (12)
HAA cost (¢cjr a4 = 6.0A1)
If [drou| < 0257, k. (‘H,L,J\'(angleDiff(@”""".l))) (13)
HFE cost (cypp = T.0AL HHMFE = 2057 rad (+ for right legs) )
If |dyo| < 0.257, kecurpK(angleDiff(a" TP GHFF)) (14)
KFE cost (cxrr = T.0AL 0KFE = £2.45 vad)
If |¢hou| < 0.257, kecirpK(angleDif £(ghFE GhFE)) (15)

contact slip cost (¢, = 6.0At)

vl |12
e, et 1Vl 06
2]
body contact impulse cost (¢, = 6.0At)
eo et Nkl .
¢ uwpipvrl — |11
internal contact cost (c.i,y = 6.0Af)
keCeint| L.l (18)
orientation cost (¢, = 6.0Af)
co||0,0,=1]" = ¢, ||? (19)

smoothness cost (¢, = 0.0025Af1)

ke[ Timr = el (20)
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Table S3. Initial state distribution for training both the command-conditioned
and high-speed locomotion. The initial state is randomized to make the trained
policy more robust.

mean standard deviation

base position [0,0,0.55]7 1.5cm

base orientation (1,0,0,0]" 0.06 rad (about a random axis)

joint position [0,0.4,—0.8,0,0.4,—0.8, | 0.25rad
0,-0.4,0.8,0,—0.4,0.8]"

base linear velocity | 0° 0.012 m/s

base angular velocity | 0° 0.4rad/s

joint velocity 0" 2rad/s
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2020 Learning quadrupedal locomotion over challenging terrain
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Fig. 4. Creating a proprioceptive locomotion controller. (A) Two-stage training process. First, a teacher policy is trained using RL in simulation. It has access to privileged
information that is not available in the real world. Next, a proprioceptive student policy learns by imitating the teacher. The student policy actson a stream of proprioceptive
sensory input and does not use privileged information. (B) An adaptive terrain curriculum synthesizes terrains at an appropriate level of difficulty during the course of
training. Particle filtering was used to maintain a distribution of terrain parameters that are challenging but traversable by the policy. (C) Architecture of the locomotion
controller. The learned proprioceptive policy modulates motion primitives via kinematic residuals. An empirical model of the joint position PD controller facilitates

deployment on physical machines.
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S. Bai, J. Z. Kolter, V. Koltun, An empirical evaluation of generic convolutional and recurrent networks
for sequence modeling. arXiv:1803.01271 [cs.LG] (4 March 2018).
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Figure 1. Architectural elements in a TCN. (a) A dilated causal convolution with dilation factors d = 1, 2, 4 and filter size k = 3. The
receptive field is able to cover all values from the input sequence. (b) TCN residual block. An 1x1 convolution is added when residual
input and output have different dimensions. (¢) An example of residual connection in a TCN. The blue lines are filters in the residual

function, and the green lines are identity mappings.

: Dilated Causal Conv : :
=2 1 t 1x1 Conv : H
: Dropout (aptional) :
. [ H [
Hidden Retl i : W




B (25 JR 25— T T AR 3] (privileged leamning) 798 A SR BLELHE il 3k
] I 0BRSS S IR sl BRI S RRB, 9 EL VAL h 0100 2 TE 4 8 0 1
ST IR IRIE SN BIOOBAE NI R A T A B, eI ST, (0 T U AL
& H—— LI (ground-truth) JLAS ABEAANT L, B I B0 #6-:A Ph JB A (12 2 o
B3], R AU LIS A BT PR AR R AR H . KRM R T 7 B BR b P, (L
22 ST 10 s T LUEREALIR S, Bl 2SR 0PV FR B 0

Privileged Training

1. Teacher Training (RL) Simulation
Environment
Teacher Action
Policy @
(MLP) State & Reward

2. Student Training (Distillation)

TCN -
Policy Action

Sequence of Proprioceptive measurements

Training is done in two steps.



Privileged Training

Simulation
Environment

1. Teacher Training (RL)

Action

& Reward
U

Privileged information

- Contact states
- Contact normal
- Local terrain profile
- Friction coefficients
- Disturbance ...



Privileged Training
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Figure S2: Reconstructed privileged information in different situations. (A) Estimated fric-
tion coefficient between the feet and the terrain while traversing a wet whiteboard. The shaded
area denotes 95 % confidence interval. (B-D) Reconstruction of the external disturbance and
terrain information in different scenarios. Blue arrow: estimated external force applied to the
torso. Red ellipsoid: estimated terrain shape around the foot. The center of the ellipsoid refers
to the estimated terrain elevation and the vertical length represents uncertainty (1 standard de-
viation). For each foot, 8 ellipsoids are symmetrically placed along a circle with 10 cm radius.
Black arrow: terrain normal at the in-contact foot.
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Figure S1: Illustration of the adaptive curriculum. (A) Examples of Hills terrains. The
color bar indicates desirability; dark blue represents low desirability. (B) Terrain desirability
estimated from 1000 trajectories generated by a fully trained teacher policy. The red crosses
correspond to the examples presented in A. (C) The distribution of terrain profiles sampled by
the particle filter during the last 100 iterations of teacher training. (D) Evolution of Stairs terrain
parameters during training.
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Fig. 3. Evaluation in an indoor environment. (A) Locomotion over unstable debris. The robot steps onto loose boards (highlighted in red and blue) that dislodge under
the robot’s feet. (B) The policy exhibits a foot-trapping reflex and overcomes a 16.8-cm step. (C) The policy learns to appropriately handle obstructions irrespective of the
contact location. Here, it is shown reacting to an obstacle that is encountered mid-shin during the swing phase. (D) Controlled experiments with steps and payload. Our
controller and a baseline (7, 27) were commanded to walk over a step with and without the 10-kg payload. (E) Success rates for different step heights. The success rate
was evaluated over 10 trials for each condition. (F) Mean linear speeds for different command directions on flat terrain. 0° refers to the front of the robot. Shaded areas
denote 95% Cls. (G) Mean heading errors for different command directions on flat terrain. Shaded areas denote 95% Cls.



Table 1. Comparison of locomotion performance in natural
environments. The mechanical COT is computed using positive

mechanical power exerted by the actuators.

Terrain
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O T L RN o SN -
speed ("'/5) Basellne 0199 0. 197 -
Average Ours 0.423 0 692 1.23
mechanlcal Er T aEE I EEEEEL EEL AE I AEL AT EEE AR R sErrassrmiaEErann EraaEEramsErasrEaE L EEEAAmE e
cort Baseline 0.625 0.931 -

A command direction 50 N external force

Bl B it

Slope Step Disturbance

mmE TCN-1 (0.02's) EEE TCN-20 (0.4s) EEE TCN-100 (2.0 s) W Teacher

B Slope . Step C 18 cm step D External force
8 r 1 100 1
I <100 = s
E £ s 75 04 35.5 %)
503 «w 50 £ s0 =
9 a o §0.2
2 2 0 g o 300
16 18 20 2 Front Hind ©
Slope angle (deg) Step height (cm) legs legs
Il TCN-20 without privileged training B TCN-20 with privileged training
Slope - Step F Mean reward G Mean episode length
q
:"7 %100 0.20 3400
£ s e o
° 0.2 . 50 g 0.15 3 200
@ 2 < £
o0 g 0 0 0101 F
a0 T T T 0 -7 T T
16 18 0 5000 10000 0 5000 10000
Slope angle (deg) Step height (cm) Iteration Iteration

Teacher without adaptive curriculum W Teacher with adaptive curriculum

H Slope - Step I Mean reward J  Mean episode length
= 1 2 0.20 , 400

£03 £100 b &

= 'y ©0.15 @

§ 0.2 ﬁ 50 ; 2200

&0.1 ] 0.10 A =

@ 0 T T T 0= T T
10 25 16 18 0 2500 5000 0 2500 5000
Slope angle (deg) Step height (cm) Iteration Iteration

Fig. 5. Ablation studies. We trained each model five times using different random seeds. Error bars denote 95% Cls.
(A) Test setups. The robot was commanded to advance for 10 s in the specified direction (black arrow). We conducted
100 trials for each test. On the step test, a trial was considered successful if the robot traversed the step with both
frontand hind legs. Robots were initialized with random joint configurations. Initial yaw angle was sampled from
U(-m, nt) for the slope test and from U(— /6, 7t/6) for the other tests. The friction coefficients between the feet and the
ground were sampled from U(0.4,1.0). The external force was applied for 5 s in the lateral direction. (B to D) Impor-
tance of memory length N in the TCN-N encoder. (E to G) Importance of privileged training. (F) Learning curves for
the teacher (gray) and a TCN-20 student trained directly, without privileged training (red). For comparison, the blue
line indicates the mean reward of a TCN-20 student trained with privileged training. The reward was computed by
running each policy on uniformly sampled terrains. (H to J) Importance of the adaptive curriculum.



Jk:ux*ﬂff _ﬂ;y{nlu Data dimension | x; | o; | hy
Desired direction ((7504)xy) 2 vV IV
Desired turning direction ((F54)-) 1 v |V
Gravity vector (e,) 3 v |V
Base angular velocity (Z5w) 3 v |V
Base linear velocity (P5v) 3 v |V
Joint position/velocity (6;, 6;) 24 v |V
FTG phases (sin(¢;), cos(¢;)) 8 v |V
FTG frequencies (qBi) 4 v |V
Base frequency (f,) 1 v
Joint position error history 24 v
Joint velocity history 24 v
Foot target history ((7f,4);—1.¢—2) 24 v
Terrain normal at each foot 12 v
Height scan around each foot 36 v
Foot contact forces 4 v
Foot contact states 4 v
Thigh contact states 4 v
Shank contact states 4 v
Foot-ground friction coefficients 4 v
External force applied to the base 3 v

Table S4: State representation for proprioceptive controller (top) and the privileged infor-
mation (bottom).
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Layer Teacher TCN-N Student GRU Student | Decoder
input | o Xy 0, h (60xN) 0y 0, (04, ly)

1 id | tanh(72) | id | 1D conv dilation 1 | id | GRU(68) | relu(196)

2 id | tanh(64) | id | 1D conv stride 2 concatenate Output

3 concatenate | id | 1D conv dilation 2 | tanh(256)* -

4 tanh(256)* | id | 1D conv stride 2 tanh(128)* -

5 tanh(128)* | id | 1D conv dilation 4 tanh(64)* -

6 tanh(64)* | id | 1D conv stride 2 Output* -

7 Output* id tanh(64) - -

8 - concatenate - -

9 - tanh(256)* - -

10 - tanh(128)* - -

11 - tanh(64)* - -

12 - Output™ - -

Table S5: Neural network architectures. Unless specified otherwise, the dilation and stride
are 1 for convolutional layers. The filter size is fixed to 5. The layers marked with * are copied
from the teacher to learners after the teacher training. id refers to the identity map. The TCN-N
architecture uses dilated causal convolution (22). Each convolutional layer is followed by a relu
activation function.

Model | seq. length | # channels | # param. SGD time (s)
TCN-1 1 60 161960 | 9.22¢-3 (£1.78e-3)
TCN-20 20 44 158300 | 2.11e-2 (+1.24e-3)
TCN-100 100 34 158070 | 5.07e-2 (+1.94e-3)
GRU 100* 159640 | 1.52e-1(£1.89e-2)

Table S6: Network parameter settings and training time for student policies. SGD time
refers to the computation time required for one stochastic gradient descent update with the
batch size given in Table S8. The computation times are presented as empirical means with
standard deviations. *The sequence length for the GRU network stands for the sequence length
used for Truncated BPTT (57).
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el Reward The student policy is trained via supervised learning. The loss
Step 1. Teacher policy training [ RL algorithm i:::'—:ni_. function iS deﬁned as
V Policy P
Privﬁeged - robot state 0¢ I gradient i _ 2 _ 2
Information®; | | ;. : L = (@losxi)—alo, H))" + (I{opx:) —1{H)) (1)
- contact states H
- contact forces i
e o Quantities marked by a bar (=) denote target values generated by
- disturb H ;
sturbances v the teacher. We use the dataset aggregation strategy (DAgger) (38).

Piiiation Specifically, training data are generated by rolling out trajectories
by the student policy. For each visited state, the teacher policy com-
putes its embedding and action vectors (). These outputs of the

Step2. Student policy training lImitate

| Proprioceptive

i history [ . . c 5 .

, teacher policy are used as supervisory signals associated with the

o P corresponding states. The hyperparameters we used are given in
Save proprioceptive measurements every 0.02 s g table 58

HRE: BBEC (T, BEE. 18F) , EEfAT, 400Hz 7

During the deployment, the base velocity and orientation are estimated by the state estimator Dame Time |
Teacher policy training ~ 12 hrs
that relies on inertial measurements and leg kinematics (37). Student policy training ~ 4hrs
Adaptive terrain curriculum 29s

The neural network policy runs at 400 Hz on an onboard CPU (Intel i7-5600U, 2.6 — Taple SI: Computation time for training. The TCN-100 architecture is used for the student
policy. The training is conducted on a desktop machine with i7-8700K CPU and a Geforce RTX

3.2GHz, dual-core 64-bit) integrated into the robot. The Tensorflow C++ API is used for on- 2080 GPU.

board inference.
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The FTG is a function F(¢) : [0.0,2m) — R’ that outputs foot position
targets for each leg. The FTG drives vertical stepping motion when
fiis nonzero. The definition of F(¢) is given in section S3. The policy

S3. Foot trajectory generator

The foot trajectory is defined as

(h(—2k3 + 3k2) — 0.5)Hi2 ke0,1]
F(¢) = { (h(2k? — 9k + 12k — 4) — 0.5)Hz k€ [1,2] (10)
—0.5Hi otherwise,

where k = 2(¢; —m) /7 and h is a parameter for the maximum foot height. Each segment during
the swing phase (k € [0, 2)) is a cubic Hermite spline connecting the highest and lowest points
with a zero first derivative at the connecting points. Other periodic functions such as h; sin(¢;)
can be used for the FTG. With a set of reasonably tuned fj, / and ¢, o, a quadruped can stably

step in place. In our setting, fy = 1.25, h = 0.2 m, and ¢, o are sampled from U (0, 27).
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S4. Reward function for teacher policy training

The reward function is defined as 0.057y, + 0.05r,, + 0.04r, + 0.017¢. + 0.027ry. + 0.025r, +

2-107%r,. The individual terms are defined as follows.

e Linear Velocity Reward (r;,): This term maximizes the v, = (P30)y - (Pg7) 2y, which
is the base linear velocity projected onto the command direction.
exp (—=2.0(vy — 0.6)%) vy < 0.6
=4 1.0 U = 0.6 . (1
0.0 zero command

The velocity threshold is defined as 0.6 m/s which is the maximum speed reachable on

the flat terrain with the existing controller (27).

Angular Velocity Reward (7,,): We motivate the agent to turn as fast as possible along

the base z-axis when (F,0r). is nonzero. It is defined as

xp (—1.5(wpr — 0.6)%)  wpr < 0.6
e {(J\p( 1.5(wpr — 0.6)2)  wpy < 0.6 i3

1.0 Wpr > 0.6

where w,, = (%w). - (For)..

Base Motion Reward (73,): This term penalizes the velocity orthogonal to the target direc-

tion and the roll and pitch rates such that the base is stable during the locomotion.
ry i= exp(—1.502) + exp(—1.5||(Psw) | *) (13)

where v, = ||(P50)zy — Vpr - (P507)2y||. When the stop command is given, v, is replaced

by || 7l

¢ Foot Clearance Reward (rf.): When a leg is in swing phase, i.e., ¢; € [ﬂ', 27), the robot

should lift the corresponding foot higher than the surroundings to avoid collision. We first
define the set of such collision-free feet as Fojear = {i : 77 > max(Heansi), i € Laving}
where H,,, ; is the set of scanned heights around the i-th foot. Then the clearance cost

is defined as

rre =Y (L5, (i)/|Laing|) € [0.0,1.0]. (14)

€ swing
Body Collision Reward (r,.): We want to penalize undesirable contact between the robot’s

body parts and the terrain to avoid hardware damage.

The == _lirc,body\lc,footl- (15)

Target Smoothness Reward (r,): The magnitude of the second order finite difference
derivatives of the target foot positions are penalized such that the generated foot trajecto-

ries become smoother.
re = —||(rya)e — 2(rpa)i—1 + (rra)i=2||- (16)

Torque Reward (r;): We penalize the joint torques to prevent damaging joint actuators

during the deployment and to reduce energy consumption (7 o< electric current).

Tr == X icjoints|Til- a7)
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S8. Recurrent neural network student policy

We use the TCN architecture for the proprioceptive policy (22). For comparison, we also evalu-
ated a recurrent network with gated recurrent units (GRU) (50). The architectures are specified

in Tables S5 and S6. The loss function for training a GRU student policy is defined as
L = (a(or, 1) — ar(0r))* + (L(or, x0) — (o). (18)

To improve the performance and computational efficiency of the training, we have implemented
Truncated Backpropagation Though Time (Truncated BPTT) (517).

Performance on the diagnostic settings presented in Fig. 5A is given in Fig. S3. Overall,
the performance of the GRU-based controller is between that of TCN-20 and TCN-100. The
performance is comparable to TCN-100 in the slope setting, but the GRU-based controller fails
to achieve the performance of TCN-100 in step experiments.

The chief advantage of the TCN is in training efficiency. The training time for the TCN is

much faster in comparison to the GRU. The computation times are reported in Table S6.

Success rate (%)

Speed (m/s)

E1%,

—\—

Step

SEME L= (alo,x) —alo,

TCN-1

16 18
Step height (cm)

Slope

0.2

10 25
Slope angle (deg)

20

Deviation (rad.)

TCN-20
TCN-100
TCN-100
Naive IL
GRU
Teacher

External force

o
B

e
[N}

o
=}

H))*,

Figure S3: Comparison of neural network architectures for the proprioceptive controller.
We trained each model 5 times using different random seeds. The error bars denote 95% con-

fidence intervals.

imitation learning method without the latent representation loss (Eq. 19).

‘TCN-100 naive IL" denotes the TCN-100 network trained using a naive
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Attention-based Recurrent Encoder (RNN)
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state.

Fig. 6. Overview of the training meth-
ods and deployment. We first train a
teacher policy with access to privileged
simulation data using RL. This teacher
policy is then distilled into a student
policy, which is trained to imitate the
teachers actions and to reconstruct the
ground-truth environment state from
noisy observations. We deploy the stu-
dent policy zero-shot on real hardware
using height samples from a robot-centric
elevation map.
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Fig. 2. A hike on the Etzel mountain BN g ek Etzal s
ummit

in Switzerland, completed by ANYmal 1068m
with our locomotion controller. The
2.2-km route—with 120 m of eleva-
tion gain and inclinations up to 38%—
encompasses a variety of challenging
terrains [(A) to (I)]. ANYmal reached the
summit faster than the human time indi-
cated in the official signage and finished
the entire route in virtually the same time
as given by a hiking guide (47).

Overall distance: 2.2 km
Elevation gain: 120 m

) ) : L e Googletarth
Duratfon (up): 31 min Start, Goal Landsat / Copernicagpata 510 NOA
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Fig. 3. Exteroceptive repr ion and challenges. Our locomotion controller perceives the environment through height samples (red dots) from an elevation map
(A). The controller is robust to many perception challenges commonly encountered in the field: missing map information due to sensing failure (B, C, and G) and misleading
map information due to nonrigid terrain (D and E) and pose estimation drift (F).
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Fig. 4. We pared the d ller with a proprioceptive baseline. An experiment with steps of varying height shows that our controller can overcome
notably higher obstacles than the baseline (A and B). Our method completes an obstacle course in less than half the time of the baseline and without requiring any
human help (Cand D). As seen in the graphs, our controller could follow the command more precisely. Note that the directional command plotted in (F) is scaled to

0.6 m/s. (E and F) Our controller can maintain double the linear velocity of the baseline and achieves a fivefold increase in turning speed. The arrows indicate when the
robot reached the step (Gand H).
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Figure S1: Comparison of the presented controller to a proprioceptive baseline (4) over random
terrain. We collected 300 trials with a fixed velocity command over 41 x 41 different terrain
parameter combinations and compared success rates. Our controller was able to traverse a much
wider range of terrain profiles on both grid steps (A) and stairs (B).
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Fig. 5. Internal belief state inspection during perceptive failure using a learned belief decoder. Red dots indicate height samples given as input to the policy. Blue
dots show the controller's intemal estimate of the terrain profile. (A) After stepping on a soft obstacle that cannot support a foothold, the policy correctly revises its esti-
mate of the terrain profile downward. (B) A transparent obstacle is correctly incorporated into the terrain profile after contact is made. (C) With operational sensors, the
robot swiftly and gracefully climbs the stairs, with no spurious contacts. (D) When the robot is blinded by covering the sensors, the policy can no longer anticipate the
terrain but remains robust and successfully traverses the stairs. (E) When stepping onto a slippery platform, the policy identifies low friction and compensates for the in-
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Fig. 7. Details of robust terrain perception components. (A) During student training, random noise is added to the height samples. The noise is sampled from a Gaussian
distribution MV(0,z' € R®), where each z{ controls a different noise component i per leg /. (B) We use multiple noise configurations z to simulate different operating
conditions. “Zero noise” is applied during teacher training, whereas “nominal noise” represents normal mapping conditions during student training. “Large offset” noise
simulates large map offsets due to pose estimation drift or deformable terrain surfaces. “Large noise” simulates a complete lack of terrain information due to occlusion or
sensor failure. (C) The student policy belief encoder incorporates a recurrent core and an attentional gate that integrates the proprioceptive and exteroceptive modalities.
The gate explicitly controls which aspects of exteroceptive data should pass through. (D) The belief decoder has a gate for reconstructing the exteroceptive data. It is only
used during training and for introspection into the belief state.



Teacher policy training

In the first stage of training, we aim to find an optimal reference
control policy that has access to perfect, privileged information and
enables ANYmal to follow a desired command velocity over ran-
domly generated terrain. The desired command is generated ran-
domly as a vector v4es € R? = (v, vy, W), where v,, v, represents the
longitudinal and lateral velocity, and w represents the yaw velocity,
all in the robot’s body frame.

We used proximal policy optimization (PPO) (59) to train
the teacher policy. The teacher is modeled as a Gaussian policy,
a; ~ MNmg(o; = s;),0l), where mg is implemented by a multilayer
perceptron (MLP) parameterized by 0, and ¢ represents the vari-
ance for each action.

Observation and action

The teacher observation is defined as 0/*M" = (o, 0, "), where o”
refers to the proprioceptive observation, o refers to the exterocep-
tive observation, and s/ refers to the privileged state. of contains the
body velocity, orientation, joint position and velocity history, action
history, and each leg’s phase. o is a vector of height samples around
each foot with five different radii. The privileged state s’ includes
contact states, contact forces, contact normals, friction coefficient,
thigh and shank contact states, external forces and torques applied
to the body, and swing phase duration.

Our action space is inspired by central pattern generators (4).
Eachleg!=1{1, 2, 3, 4} keeps a phase variable ¢; and defines a nominal
trajectory based on the phase. The nominal trajectory is a stepping
motion of the foot tip, and we calculate the nominal joint target g;(¢;)
for each joint actuator 7 = {1, ---,12} using inverse kinematics. The
action from the policy is the phase difference A¢; and the residual
joint position target Ag;. More details of the observation and action
space are in section S5.
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RL Rewards: The reward function encourages the agent to
move forward with a maximum speed of 0.35 m/s, and penalizes
it for jerky and inefficient motions. Let’s denote the linear
velocity as v, the orientation as @ and the angular velocity as
w, all in the robot’s base frame. We additionally define the joint
angles as q, joint velocities as g, joint torques as 7, ground
reaction forces at the feet as f, velocity of the feet as v¢ and
the binary foot contact indicator vector as g. The reward at
time ¢ is defined as the sum of the following quantities:

1) Forward: min(vt,0.35)
2) Lateral Movement and Rotation: —[[v}||* — [|w}
3) Work: —|77 - (qt — ¢*7Y)|
4) Ground Impact: —||f* — f'=1||
5) Smoothness: —||7¢ — 7t~ 1||?
6) Action Magnitude: —||a‘||?
7) Joint Speed: —||¢(*||?
8) Orientation: —||6%_, F svanll
9) Z Acceleration: HI’H
10) Foot Slip: —||diag(g’) - v¢!||?
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Fig. 2: RMA consists of two subsystems - the base policy 7 and the adaptation module ¢. Top: RMA is trained in two phases.
In the first phase, the base policy 7 takes as input the current state x;, previous action a;—; and the privileged environmental
factors e; which is encoded into the latent extrinsics vector z; using the environmental factor encoder p. The base policy is
trained in simulation using model-free RL. In the second phase, the adaptation module ¢ is trained to predict the extrinsics 2
from the history of state and actions via supervised learning with on-policy data. Bottom: At deployment, the adaptation module
¢ generates the extrinsics Z; at 10Hz, and the base policy generates the desired joint positions at 100Hz which are converted to
torques using Al’s PD controller. Since the adaptation module runs at a lower frequency, the base policy consumes the most
recent extrinsics vector Z, predicted by the adaptation module to predict a,. This asynchronous design was critical for seamless
deployment on low-cost robots like A1 with limited on-board compute. Videos at: https://ashish-kmr. github.io/rma-legged-robots/
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Training Curriculum: If we naively train our agent with the
above reward function, it learns to stay in place because of
the penalty terms on the movement of the joints. To prevent
this collapse, we follow the strategy described in [23]. We
start the training with very small penalty coefficients, and then
gradually increase the strength of these coefficients using a
fixed curriculum. We also linearly increase the difficulty of
other perturbations such as mass, friction and motor strength
as the training progresses. We don’t have any curriculum on
the terrains and start the training with randomly sampling the
terrain profiles from the same fixed difficulty.
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C. Asynchronous Deployment

We train RMA completely in simulation and then deploy it in
the real world without any modification or fine-tuning. The two
subsystems of RMA run asynchronously and at substantially
different frequencies, and hence, can easily run using little
on-board compute. The adaptation policy is slow because it
operates on the state-action history of 50 time steps, roughly
updating the extrinsic vector Z; once every 0.1s (10 Hz).
The base policy runs at 100 Hz and uses the most recent
z; generated by the adaptation module, along with the current
state and the previous action, to predict a;. This asynchronous
execution doesn’t hurt performance in practice because z;
changes relatively infrequently in the real world.

Alternately, we could have trained a base policy which
directly takes the state and action history as input without
decoupling them into the two modules. We found that this (a)
leads to unnatural gaits and poor performance in simulation,
(b) can only run at 10Hz on the on-board compute, and (c)
lacks the asynchronous design which is critical for a seamless
deployment of RMA on the real robot without the need for
any synchronization or calibration of the two subsystems.
This asynchronous design is fundamentally enabled by the
decoupling of the relatively infrequently changing extrinsics
vector with the quickly changing robot state.



Hardware Details: We use Al robot from Unitree for all our
real-world experiments. Al is a relatively low cost medium
sized robotic quadruped dog. It has 18 degrees of freedom out
of which 12 are actuated (3 motors on each leg) and weighs
about 12 kg. To measure the current state of the robot, we
use the joint position and velocity from the motor encoders,
roll and pitch from the IMU sensor and the binarized foot
contact indicators from the foot sensors. The deployed policy
uses position control for the joints of the robots. The predicted
desired joint positions are converted to torque using a PD
controller with fixed gains (K, = 55 and K4 = 0.8).

Simulation Setup: We use the RaiSim simulator [22] for
rigid-body and contact dynamics simulation. We import the
A1l URDF file from Unitree [53] and use the inbuilt fractal
terrain generator to generate uneven terrain (fractal octaves
= 2, fractal lacunarity = 2.0, fractal gain = 0.25, z-scale =
0.27). Each RL episode lasts for a maximum of 1000 steps,
with early termination if the height of the robots drops below
0.28m, magnitude of the body roll exceeds 0.4 radians or the
pitch exceeds 0.2 radians. The control frequency of the policy
is 100 Hz, and the simulation time step is 0.025s.
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Fig. 3: We evaluate RMA in several out-of-distribution setups in the real world. We compare RMA to A1’s controller and
RMA without the adaptation module. We find that RMA steps down a height of 15cm with 80% success rate and walks over
unseen deformable surfaces, such as a memory foam mattress and a slightly uneven foam with 100% success rate. It is also
able to successfully climb inclines and steps. Al’s controller fails to walk over uneven foam. At the bottom, we also analyze
the payload carrying limits of the three methods. We see that the Al controller’s performance starts degrading at 8Kg payload
capacity. RMA w/o adaptation fails to move for payloads more than 8Kg, but rarely falls. For reference, Al robot weights 12Kg.
Overall, the proposed method consistently dominates the baseline methods. The numbers reported are averaged over 5 trials.
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Base Policy and Environment Factor Encoder Architecture:
The base policy is a 3-layer multi-layer perceptron (MLP)
which takes in the current state x; € R3Y, previous action
a;—1 € R' and the extrinsics vector z; € R®, and outputs
12-dim target joint angles. The dimension of hidden layers is
128. The environment factor encoder is a 3-layer MLP (256,
128 hidden layer sizes) and encodes e, € R'7 into z, € RS,

Adaptation Module Architecture: The adaptation module
first embeds the recent states and actions into 32-dim repre-
sentations using a 2-layer MLP. Then, a 3-layer 1-D CNN
convolves the representations across the time dimension to
capture temporal correlations in the input. The input channel
number, output channel number, kernel size, and stride of each
layer are [32,32,8,4], (32, 32,5,1], (32, 32,5, 1]. The flattened
CNN output is linearly projected to estimate z;.
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Learning Base Policy and Environmental Factor Encoder
Network: We jointly train the base policy and the environment
encoder network using PPO [48] for 15, 000 iterations each
of which uses batch size of 80,000 split into 4 mini-batches.
The learning rate is set to 5e—4. The coefficient of the reward
terms are provided in Section III. Training takes roughly 24
hours on an ordinary desktop machine, with 1 GPU for policy
training. In this duration, it simulates 1.2 billion steps.

Learning Adaptation Module: We train the adaptation mod-
ule using supervised learning with on-policy data. We use
Adam optimizer [29] to minimize MSE loss. We run the
optimization process for 1000 iterations with a learning rate of
5e—4 each of which uses a batch size of 80,000 split up into
4 mini-batches. It takes 3 hours to train this on an ordinary
desktop machine, with 1 GPU for training the policy. In this
duration, it simulates 80 million steps.
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(d) Humanoid: Dribble (Locomotion)
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(g) Humanoid: Stepping Stones (Cartwheel) (h) Humanoid: Stepping Stones (Jump)
Fig. 3. The motion prior can be trained with large datasets of diverse motions, enabling simulated characters to perform complex tasks by composing a wider
range of skills. Each environment is denoted by "Character: Task (Dataset)".



based on adversarial imitation learning. High-level task objectives that the
character should perform can be specified by relatively simple reward func-

Environment Policy

¢
tions, while the low-level style of the character’s behaviors can be specified j Jj < %

by a dataset of unstructured motion clips, without any explicit clip selection

or sequencing. For example, a character traversing an obstacle course might . ? 2 A
prior also does not require a separate pre-training phase, and instead, S t
can be trained jointly with the policy. Dataset v

Motion Prior S

RLRM+ESRM

|
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Fig. 2. Schematic overview of the system. Given a motion dataset defining a
desired motion style for the character, the system trains a motion prior that
specifies style-rewards r? for the policy during training. These style-rewards
are combined with task-rewards ¢ and used to train a policy that enables
a simulated character to satisfy task-specific goals g, while also adopting
behaviors that resemble the reference motions in the dataset.



In this work, we adopt the loss function proposed for least-squares
GAN (LSGAN) [Mao et al. 2017], which has demonstrated more

stable training and higher quality results for image synthesis tasks.

The following objective is used to train the discriminator,

arg min Egm g o) [(D(s, ) — 1)2] +Egr (s,8) [(D(S, s') + 1)2] i
D

(6)

The discriminator is trained by solving a least-squares regression

problem to predict a score of 1 for samples from the dataset and
—1 for samples recorded from the policy. The reward function for

training the policy is then given by ¢E17549 J_}J

r(sy,sp41) =max [0, 1—0.25(D(ss,8141) — 1) (7)

6.1 States and Actions
. ’(i:l\\.
The state s; consists of a set of features that describes the configura-

tion of the character’s body. The features are similar to those used by
Peng et al. [2018a], which include the relative positions of each link
with respective to the root, the rotation of each link as represented
using the 6D normal-tangent encoding, along with the link’s linear
and angular velocities. All features are recorded in the character’s lo-
cal coordinate system. Unlike previous systems, which synchronize
the policy with a particular reference motion by including additional
phase information in the state, such as scalar phase variables [Lee
et al. 2019; Peng et al. 2018a] or target poses [Bergamin et al. 2019;
Chentanez et al. 2018; Won et al. 2020], our policies are not trained
to explicitly imitate any specific motion from the dataset. Therefore,
no such synchronization or phase information is necessary.

Each action a; specifies target positions for PD controllers posi-
tioned at each of the character’s joints. For spherical joints. each

(E=ZE7)

Target Heading: In this task, the objective for the character is to
move along a target heading direction d* at a target speed v*. The
goal input for the policy is specified as g; = ((-l;, v"*), with t:l;' being
the target direction in the character’s local coordinate frame. The
task-reward is calculated according to:

rd = exp (-025 (o" - d* - x§™)?), (1)

where x;°™ is the center-of-mass velocity of the character at time
step t, and the target speed is selected randomly between v* €
[1,5]m/s. For slower moving styles, such as Zombie and Stealthy,
the target speed is fixed at 1m/s.

Target Location: In this task, the character’s objective is to move
to a target location x*. The goal g; = X} records the target location
in the character’s local coordinate frame. The task-reward is given
by:

r¢ = 0.7 exp (—0.5||x* — xjoot ||2)

+0.3cxp( (max (0, o* — dj - x{°™)) ) (12)

Here, v* = 1m/s specifies a minimum target speed at which the
character should move towards the target, and the character will
not be penalized for moving faster than this threshold. dj is a unit
vector on the horizontal plane that points from the character’s root
to the target.

Dribbling: To evaluate our system on more complex object ma-
nipulation tasks, we train policies for a dribbling task, where the
objective is for the character to dribble a soccer ball to a target
location. The reward function is given by:

r8 = 01rE +0.1rP + 0.3 +0.5rP (13)
cv _ E o ball | gcom 2

=exp |-1.5 max |0, =dyt %y (14)

( —05 “Xball mm”2) (15)

:cxp( ma. v* —df xb““) ) (16)

= exp ( 0.5 ||x; — x“m"HZ) ] (17)

Strike: Finally, to further demonstrate our approach’s ability to
compose diverse behaviors, we consider a task where the charac-
ter’s objective is to strike a target using a designated end-effector
(e.g. hands). The target may be located at various distances from
the character. Therefore, the character must first move close to the
target before striking it. These distinct phases of the task entail
different optimal behaviors, and thus requires the policy to compose
and transition between the appropriate skills. The goal g; = (X}, ht)
records the location of the target X} in the character’s local coor-
dinate frame, along with an indicator variable h; that specifies if
the target has already been hit. The task-reward is partitioned into
three phases:

1, target has been hit
r¢ =403 rPear £0.3, [|x* - xt°t|| < 1.375m .

0.3 r{“', otherwise

(18)

If the character is far from the target x*, rflr encourages the char-

acter to move to the target using a similar reward function as the
Target Location task (Equation 12). Once the character is within a
given distance of the target, r;'“*" encourages the character to strike
the target with a particular end—effector‘

e —UQexp( 2|Ix* — x¢F) 2 )+08c11p(§(l, xj“ 0, 1)
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6.2 Network Architecture

Each policy 7 is modeled by a neural network that maps a given state
st and goal g to a Gaussian distribution over actions 7 (at|st, g) =
N (u(st, g), 2), with an input-dependent mean (s, g) and a fixed
diagonal covariance matrix X. The mean is specified by a fully-
connected network with two hidden layers, consisting of 1024 and
512 ReLU [Nair and Hinton 2010], followed by a linear output
layer. The values of the covariance matrix ¥ = diag(oy, o2, ...) are
manually-specified and kept fixed over the course of training. The
value function V(s;, g) and discriminator D(s;, s;+1) are modeled
by separate networks with a similar architecture as the policy.

6.3 Training

Our policies are trained using a combination of GAIL [Ho and Ermon
2016] and proximal-policy optimization (PPO) [Schulman et al. 2017].
Algorithm 1 provides an overview of the training process. At each
time step ¢, the agent receives a task-reward rtG =G (St, at,St41,2)
from the environment, it then queries the motion prior for a style-
reward rtS =r (st,st+1), computed according to Equation 7. The
two rewards are combined according to Equation 4 to yield the
reward for the particular timstep. Following the approach proposed
by Peng et al. [2018a], we incorporate reference state initialization
and early termination. Reference state initialization is applied by

QEBEMLP

ALGORITHM 1: Training with AMP

1: input M: dataset of reference motions
2: D « initialize discriminator

Xz

3: 7 <« initialize policy
4: V « initialize value function
5: B « 0 initialize reply buffer

6: while not done do

7:

8:

9:
10:
11:
12:
13:
14:
15:
16:

17:
18:

19:

20:
21:

22:

for trajectoryi=1,. m do
7! — {(St,at,r )r . “?,g} collect trajectory with =
for time stept =0,...,T -1 do
di — D(®(s¢), B(s41))
tS — calculate style reward according to Equation 7 using d;
re — worf + wors

r

record r; in 7*
end for
store 7¥ in B
end for

for update step=1,...,n do
M — sample batch of K transitions {(&,J,b )}K from M

b « sample batch of K transitions {(s;, 3) }_‘:{: from B

update D according to Equation 8 using b and b
end for

update V and 7 using data from trajectories {7},

23: end while




5592

Table 1. Performance statistics of combining AMP with additional task
objectives. Performance is recorded as the average normalized task return,
with 0 being the minimum possible return per episode and 1 being the
maximum possible return. The return is averaged across 3 models initialized
with different random seeds, with 32 episodes recorded per model. The
motion prior can be trained with different datasets to produce policies that
adopt distinct stylistic behaviors when performing a particular task.

Character Task Dataset Task Return
Humanoid Target Locomotion 0.90 £0.01
Heading Walk 0.46 £ 0.01
Run 0.63 +0.01
Stealthy 0.89 £ 0.02
Zombie 0.94 = 0.00
Target Locomotion 0.63 £0.01
Location Zombie 0.50 £ 0.00
Obstacles | Run + Leap + Roll | 0.27 £ 0.10
Stepping Cartwheel 0.43 £0.03
Stones Jump 0.56 £0.12
Dribble Locomotion 0.78 £0.05
Zombie 0.60 £ 0.04
Strike Walk + Punch 0.73 +0.02
Target
T-Rex Location Locomotion 0.36 £0.03
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Table 2. Summary statistics of the different datasets used to train the motion
priors. We record the total length of motion clips in each dataset, along
with the number of clips, and the number of subjects (e.g. human actors)

that the clips were recorded from.

Character Dataset Size (s) | Clips | Subjects
Humanoid Cartwheel 13.6 3 1
Jump 28.6 10 4
Locomotion 434.1 56 8
Run 204.4 47 3
Run + Leap + Roll | 22.1 10 7
Stealthy 136.5 3 1
Walk 229.6 9 5
Walk + Punch 247.8 15 9
Zombie 18.3 1 1
T-Rex Locomotion 10.5 1
10 Humanoid: Target Heading Humanoid: Target Heading
O Locomotion -
0.8 w44 + Walk >
. E A Run ¥
506 B 34 ol 20
< WMM @ g
i oa %2 i
— o | ] ot
= Run ”~

0.0 T T T T r T T 0 - T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0 1 2 3 4 5
Samples le8 Target Speed (m/s)

Fig. 4. Performance of Target Heading policies trained with different
datasets. Left: Learning curves comparing the normalized task returns
of policies trained with a large dataset of diverse locomotion clips to policies
trained with only walking or running reference motions. Three models are
trained using each dataset. Right: Comparison of the target speed with the
average speed achieved by the different policies. Policies trained using the
larger Locomotion dataset is able to more closely follow the various target
speeds by imitating different gaits.
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Fig. 1. Quadruped-humanoid transformer (https://youtu.be/kEdrOARq48A)
with a time-lapse from left to right of a stand-up and sit-down motion (top
image), obstacle negotiation (middle image), and indoor navigation (bottom
images). The former skill and the humanoid navigation on two legs are
achieved through traditional RL training with a task reward formulation.
Instead of tuning the sit-down skill, we can reverse the playback of the
stand-up motion and use it as a motion prior that helps the robot discover
feasible sit-down behaviors avoiding tedious reward function tuning.
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B. Contribution

This paper introduces the Multi-AMP algorithm and ap-
plies it to our real wheeled-legged robot. Like its AMP
predecessor [6], this approach automates the imitation ob-
jective and motion selection process without heuristics. Fur-
thermore, our extension allows for the intentional switch-
ing of multiple different style objectives by changing flags
in the command input. The approach can imitate motion
priors from three different data sets, i.e., from existing
RL controllers, trajectory optimization, and reverse stand-
up motions. The latter enables the automatic discovery of
feasible sit-down motions on the real robot without tedious
reward function tuning. This permits exceptional skills with
our wheeled-legged robot in Fig. 1, where the robot can
switch between a quadruped and humanoid configuration.
To the best of our knowledge, this is the first time such a
highly dynamic skill is shown and also the first time that the
AMP approach is verified on a real robot.

The training environment of our Multi-AMP pipelines
is implemented using the Isaac Gym simulator [17], [18],
which allows for massively parallel simulation. We spawn
4096 environments in parallel to learn all three tasks si-
multaneously in a single neural network. The number of
environments per task is weighted according to their ap-
proximate difficulty, e.g., [1,1,5] in the case of the tasks
described above (While important, the training is not very
sensitive to this weighting). The state-transitions collected
during the roll-outs of these environments are mapped using
a function ¢(s) such that it extracts the linear and angular
base velocity, gravity direction in base frame, the base’s
height above ground, joint position and velocity, and finally
the position of the wheels relative to the robot’s base-frame,
i.e., ¢(5) = (Thases Tzs Cbases s §> Tee,base) € R39. The task
reward definitions for the three tasks are in Table I and II.



TABLE I
TASK-REWARDS.

All tasks formula weight
T Ealliy -0.0001
"q 4112 -0.0001
"4 112 -0.0001
4-legged locomotion

Tlin wvel e”-’bta?"get, my_33||2/0.25 1-5
Tang vel e”f-ﬂtarget, z—w||2/0,25 1.5
Ducking

Tduck 80‘8*|mgoal—3~“| 2
Stand-up | see Tab. II

TABLE 1T

WHILE STANDING

REWARDS FOR AOW STANDING UP, SITTING DOWN, AND NAVIGATING

symbols description
grotet ¢ H Robot base-frame rotation
prebet ¢ R3 | Robot base-frame position
q Joint DOF positions (excl. wheels)
qhl Hind-Leg DOF position
faY Z(robot-x axis, world z axis)
f Feet on ground (binary)
s Standing robots (binary)
stand-up formula weight
w/2—a )
Ta /2
Theight pZObOt 3
Tfeet f . -2
Twheels quront wheels * (-1 -0.003
Tshoulder ”q.shoulder”2 -1
Tstand pose e:L'p(—O.l * ”th — 4o, hl||2) 1
sit-down weight
2_

Tun—stand ma-’f( Tr{fr/za * 3,0) -3

i , /2
Tsit—down % 2.65
Tdof vel ||Q||2 -0.015
Tdof pos exp(—0.5 = ||go — q||2) * %/2 3
navigation weight
Ttrack lin e:r:p(—4 * ”dees + P{gfgﬁz ||2) * S 2

exp(—4 * ||lwges — w0 [|2) % s 2

Ttrack ang

- wlocal,:r:




We use an actuator model for the leg joints to bridge the
sim-to-real gap [23] while an actuator model is not needed
for the velocity controlled wheels. Moreover, we apply strate-
gies to increase the policy’s robustness, such as rough terrain
training (see rough terrain robustness in Fig. 1), random
disturbances, and game inspired curriculum training [18].
The highly dynamic stand-up task is especially prone to
these robustness measures, which we solve by introducing
timed pushes and joint-velocity-based trajectory termination.
The former i1dentifies the most critical movement-phase and
pushes the policy in the worst way. This increases the number
of disturbances the policy experiences during these critical
phases, rendering it more robust, which also helps with sim-
to-real efforts. Furthermore, by terminating the trajectory if
the joint velocity of any DOF exceeds the actuator’s limits,
the policy learns to keep a safety tolerance to these limits.

I'stand track ang vel I'stand

W

-Vq_f‘"-"‘ Na,

1.0 4

0.5 -
1 -
0.0 L T T T T 0 L T T T T
0 1000 2000 3000 0 1000 2000 3000
Istand track lin vel max stand duration
1000 -
il Iy 750 4
0.50 4 i
500 1 Style
0.25 1 250 - 2 Styles
3 Styles
0‘00 1 T T T T 0 L T T T T
0 1000 2000 3000 0 1000 2000 3000

Fig. 6. Multi-AMP learning capability of the stand-up task. The horizontal
axis denotes the number of epochs, and the vertical axis represents the
rewards after post-processing for comparability. Furthermore, the maximum
stand duration is plotted over the number of epochs.
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Fig. 1. Our robot can achieve robust locomotion over challenging terrains
and agile locomotion over natural terrains. The robot can successfully traverse
curbs, stairs, rocky and vegetation while running and spinning at high speed over
natural terrains. Whether on even or complex terrains, at high or low speeds,
the emergent behaviors learned by our robot exhibit a natural gait and smooth
motion.
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2. Student policy training

Fig.2. Overview of the training methods. We first train a teacher policy with access to proprioceptive observation o}, privileged state s¥’ and terrain information
iy using RL. The total reward r; obtained by the teacher consists of a task reward rf , a style reward r; based on AMP, and a regularization reward ri which
imposes constraints on the motion. A student policy is then trained by a supervised fashion, where the student imitates the teacher’s action a} eacher apd reconstructs

the latent representation l%ea"her using only proprloceptlve observation o} . We reuse the learned weights of the teacher’s low-level net to initialize the student’s
low-level net to speed up training. The motion priors are generated from the TO, using a single rigid-body model.



Simulation: We trained 4096 parallel agents on different types
of terrains using the IsaacGym simulator [9]. The teacher policy
and the student policy were trained with 400 and 200 million
simulated time steps, respectively. The overall training time
for the two stages was seven hours of wall-clock time. Each
RL episode lasts for a maximum of 1000 steps, equivalent to
20s, and terminates early if it reaches the termination criteria.
The control frequency of the policy is 50 Hz in the simulation.
All trainings were performed on a single NVIDIA RTX 3090Ti
GPU.

Termination: We terminate an episode and start the next one
when the robot reaches the termination criteria, which include
trunk collisions with the ground, large body inclinations, and
being trapped for a long period of time.

Dynamics Randomization: To improve the robustness of our
policy and facilitate transfer from simulation to the real world,
we randomize the mass of the trunk and legs, the mass and
position of payload applied to the body of the robot, the ground
friction and restitution coefficients, the motor strength, the joint-
level PD gains, and the initial joint positions in each episode.
Some of these dynamic parameters are considered as privileged
state s? to aid the teacher policy training. In addition, the same
observation noise as in [9] is added during the training phase
in the simulation. The randomization ranges for each parameter
are detailed in Table II.

Due to the instability of RL in the early stage, it is difficult
to train robots directly on very complex terrains. We adopt and
improve the automated terrain curriculum in [9]. We create a
height-field map with 100 terrains arranged in a 20 x 10 grid.
Each row has the same type of terrain arranged in increasing
difficulty, while each terrain has a length and width of 8 m.
The rough flats are constructed by adding noise increased from
+1cm to £8 cm. The inclination of the slopes increases from
0 deg to 30 deg. The waves are constructed by three sine waves
across the terrain length. The amplitude of these waves increases
from 20 cm to 50 cm. The stairs have a fixed width of 30 cm and a
step height increased from 5 cm to 23 cm. The discrete obstacles
only have two height levels increased from £5cm to +15 cm.
At the beginning of training, all robots are equally assigned to all
terrain types with the lowest difficulty. The robot is only moved
to a more difficult terrain once it has adapted to its current terrain
difficulty. This adaptation is obtained when the robot can step
out of the current terrains with more than 85&percnt; of the
average linear velocity tracking reward. In contrast, they are
reset to easier terrains if they fail to travel at least half of the
distance required by their command linear velocity at the end of
an episode. To avoid skills forgetting, robots solving the hardest
terrains are looped back to a randomly selected difficulty of
current terrain type.
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Fig. 1: Deployment of the pipeline on the quadrupedal robot ANYmal D. The robot performs highly dynamic maneuvers and
makes contacts with its limbs where necessary.
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Fig. 2: Description of our approach. We decompose the problem into three components: The perception module receives the
point cloud measurements to estimate the scene’s layout and produces a latent tensor and a map. The locomotion module
contains several low-level skills that can overcome specific scenarios. The navigation module is given a target goal and uses
the latent to plan a path and select the correct skill.
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We deploy the pipeline on the quadrupedal robot ANY-
mal D. It weighs around 55kg and has 12 series elastic
actuators capable of producing a torque of 85N m each. To

perceive the environment, it is equipped with a total of six Intel
Realsense depth cameras (two in the front, two in the back,
one left, one right), and a Velodyne Puck LiDAR. The whole
system is implemented in several ROS nodes across different
onboard computers. The locomotion and navigation modules
operate synchronously in a single node on the onboard com-
puter. The perception module is implemented on an NVIDIA
Jetson Orin and operates asynchronously with the rest of the
system, i.e., the navigation and locomotion policies take the
last received message from the perception module to infer their
respective networks. The supplementary video summarizes the
proposed approach and shows indoor and outdoor experiments
on the real robot.

The three learning-based modules operate together without
expert demonstration, offline computation, or a priori knowl-
edge of the environment and enable the robot to reliably reach
a target across different arrangements of randomized obstacles.

walk jump climb down climb up crouch = HFE - KFE

Lo JAT [Bi

Speed (m/s)

20 A2

Angle (rad)

Torque (Nm)

10 12
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o
~
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Fig. 3: Deployment of the pipeline on the robot ANYmal D. (A) Trajectory on the real robot. (B) Trajectory in simulation. (A1)-
(A3) and (B1)-(B3) depict the profiles of the robot’s speed, the selected skills, and two joint angles and torques corresponding
to (A) and (B), respectively. The system leverages the motor’s full torque capabilities and uses large deflections of the joints
to reach high speeds and overcome challenging obstacles.
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Fig. 4: Training scenarios of the locomotion skills with the resulting behaviors. (A) Jumping. (B) Climbing down. (C) Climbing

up. (D) Crouching. (E) Walking. (F) Success rate of each skill for obstacles of varying difficulty. (G) Ranges of parameters
used during training (0% to 100% in F).
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Fig. 5: Adaptive path selection. The robot starts on the ground and is given a target on top of the box in the back, and then
commanded back to the initial position. (A) Likelihood of going up and down along the direct path (red line) as a function
of the height of the box. (B) and (C) Deployment on the robot for h = 0.75m. (D) and (E) Deployment on the robot for
h = 1.15m. For the same targets and box placement, the navigation policy chooses a different path depending on the height
of the boxes to reach the goal.
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Fig. 7: Types of environments used for training. The dimensions of the individual obstacles and the arrangements are randomized.
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Figure 1: We present a framework for learning parkour skills on low-cost robots. Our end-to-end vision-based
parkour learning system enable the robot to climb high obstacles, leap over large gaps, crawl beneath low
barriers, squeeze through thin slits and run. Videos are on the project website.

* a two-stage RL method for overcoming difficult exploration problems, involving a pre-training
stage with soft dynamics constraints and a fine-tuning stage with hard dynamics constraints;
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Figure 2: We illustrate the challenging obstacles that our system can solve, including climbing high obstacles of
0.40m (1.53x robot height), leap over large gaps of 0.60m (1.5x robot length), crawling beneath low barriers of
0.2m (0.76x robot height), squeezing through thin slits of 0.28m by tilting (less than the robot width).
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Figure 3: Soft dynamics constraints and hard dynamics constraints for each skill. Given soft dynamics constraints,
the obstacles are penetrable.
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3.1 Parkour Skills Learning via Two-Stage RL

Since depth images are costly to render, and directly
training RL on visual data is not always stable, we
use privileged visual information about the environ-
ments to help RL to generate specialized parkour
skills in simulation. The privileged visual informa-
tion includes the distance from the robot’s current po-
sition to the obstacle in front of the robot, the height
of the obstacle, the width of the obstacle, and a 4- —-—
dimensional one-hot category representing the four Figure 4: We show collisions points on the robot.
types of obstacles. We formulate each specialized Collision points that penetrate obstacles are in red.
skill policy as a gated recurrent neural network (GRU [114]). The inputs to a policy other than the

a cnlli.:i?nr: Penetration
pos Depth
d(p)

recurrent latent state are proprioception sy ' € R?? (row, pitch, base angular velocities, positions -
t
. .. . 12 L. . o . e d th ] Success Rate {%)T ) Average Distance (m)T
and velocities of joints), last action a;—; € R**, the privileged visual information e}', and the Climb Leap Crawl Tilt Run | Climb Leap Crawl Tilt Run
privileged physics information efhy. We use a similar approach to prior work [8, 10] to sample  Blind 0 0 130 100 | 153 186 201 162 36
: P P MLP 0 1 63 43 100 | 1.59 174 327 231 36
physics prop(?nles like 'terram fl’lC.tIOI‘l, c'enter of mass of the robot base‘, motor strength and e‘tc_to No Distill 0 0 7 0 10l 157 175 276 186 36
enable domain adaptation from simulation to the real world. The policy outputs the target joint RMA [8] - - - 74 2.7

Ours (parkour policy) 86 80 100 73 100 | 237 3.05 36 268 3.6

positions a; € R12.
. - . - . Oracles w/o Soft Dyn | 0 0 93 86 100 | 154 173 358 173 36
We train all the specialized skill policies Tclimb, Tleap, Merawl, Tiilt, Trun SEParately on corresponding - oo Y 95 82 100 100 100 | 360 359 36 278 36

terrains shown in Figure 3 l.lSiIlg the same reward structure. We use the formulation of minimiZing Table 2: We test our method against several baselines and ablations in the simulation with a max distance of
mechanical energy in [35] to derive a general skill reward Tskill suitable for generating all skills with 3-6m. We measure the success rates and average distances Qf every skill averaged across 100 [nfx]s and 3 random

. . . seeds. Our parkour policy shows the best performance using only sensors that are available in the real world.
natural motions, which only consists of three parts, a forward reward 7yag, an energy reward Tenergy We evaluate on the test environments with obstacles proprieties that are more difficult than the ones of training

and an alive bonus 7 ;.- environments shown in Table 1.

Tskill = Tforward + Tenergy T Talive;

2 — ,
where Thorward = — 001 * [v; — VR — g # |vy|“ + o x e [l
- .12 -9
Tenergy = —Qq * |quj| s Talive = 4.
JE€joints

Measured at every time step, v, is the forward base linear velocity, vy *  is the target speed, vy 18

the lateral base linear velocity, wyaw 18 the base angular yaw velocity, 7; is the torque at joint j, wyaw
is the joint velocity at at joint 7, and « are hyperparameters. We set the target speed for all skills to
around 1 m/s. We use the second power of motor power at each joint to reduce both the average and
the variance of motor power across all joints. See the supplementary for all hyperparameters.
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Denote a collision point on the collision bodies as p, an indicator function of whether p violates the
soft dynamics constraints as 1[p|, and the distance of p to the penetrated obstacle surface as d(p).
The volume of penetration can be approximated by the sum of 1 [p] over all the collision points, and
the average depth of penetration can be approximated by the sum of d(p). In Figure 4, the collisions
points violating the soft dynamics constraints (1[p] = 1) are in red, and those with 1[p| = 0 are in
green. Concretely, the penetration reward is

T'penetrate — — Z (QS X ]l[P] + e * d(p)) * Vg
p

RUREMER: LR, BSYATFE

RL Fine-tuning with Hard Dynamics Constraints. After the pre-training stage of RL is near
convergence, we fine-tune every specialized parkour skill policy on the realistic hard dynamics
constraints (shown in Figure 3); hence, no penetrations between the robots and obstacles are possible
at the second stage of RL. We use PPO to fine-tune the specialized skills using only the general
skill reward rgq. We randomly sample obstacle properties from the ranges listed in Table 1 during
fine-tuning. Since the running skill is trained on terrains without obstacles, we directly train the
running skill with hard dynamics constraints and skip the RL pre-training stage with soft dynamics
constraints.
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3.2 Learning a Single Parkour Policy by Distillation

The learned specialized parkour skills are five policies that use both the privileged visual information
e¥’s, and the privileged physics information eghy. However, the ground-truth privilege information
is only available in the simulation but not in the real world. Furthermore, each specialized policy
can only execute one skill and cannot autonomously execute and switch between different parkour
skills based on visual perception of the environments. We propose to use DAgger [44, 45] to distill
a single vision-based parkour policy mpaurkour Using only onboard sensing from the five specialized
skill policies Tclimb, Tleap; Terawl s Tiilts Trun- We randomly sample obstacles types and properties from
Table 1 to form a simulation terrain consisting of 40 tracks and 20 obstacles on each track. Since we
have full knowledge of the type of obstacle related to every state s;, we can assign the corresponding
specialized skill policy Wifmahzcd to teach the parkour policy how to act at a state. For example, we
assign the climb policy 7imy to supervise the parkour policy given a high obstacle. We parameterize
the policy as a GRU. The inputs except the recurrent latent state are the proprioception s} ', the
previous action a;_; and a latent embedding of the depth image Itd epth processed by a small CNN.

The distillation objective is

. _proprio depth specialized [ _proprio vis _phy
argimin Est,atwﬂpm.kour,sim [D (ﬂ'parkour (-% s At—1, It ) aﬂ's]: (-53 s At—1,€; , €4 ;
epnrknur
where Opaour are the network parameters of the parkour policy, sim is the simulator with hard
dynamics constraints, and D is the divergence function which is binary cross entropy loss for policy
specialized

networks with tanh as the last layer. Both polices puour and s, are stateful. More details of
the parkour policy network are in the supplementary.
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3.3 Sim-to-Real and Deployment

Although the distillation training in Section 3.2 can bridge the sim-to-real gap in physical dynamics
properties such as terrain friction and mass properties of the robot [8, 10], we still need to address the
sim-to-real gap in visual appearance between the rendered depth image in simulation and the onboard
depth image taken by a depth camera in the real world. Shown in Figure 5, we apply pre-processing
techniques to both the raw rendered depth image and the raw real-world depth image. We apply depth
clipping, pixel-level Gaussian noise, and random artifacts to the raw rendered depth image, and apply
depth clipping, hole filing, spatial smoothing and temporal smoothing to the raw real-world depth
image.

The depth images in both simulation and real-world have a resolution of 48 * 64. Due to the
limited onboard computation power, the refresh rate of onboard depth image is 10Hz. Our parkour
policy operates at 50Hz in both simulation and the real world to enable agile locomotion skills, and
asynchronously fetches the latest latent embedding of the depth image processed by a small CNN.
The output actions of the policy are target joint positions which are converted to torques on the order
of 1000Hz through a PD controller of K,, = 50 and K; = 1. To ensure safe deployment, we apply a
torque limits of 25Nm by clipping target joint positions: clip(¢™*, (Kg4 * ¢ — 25) /K, + q, (K4 *
G+ 25)/Kp+ ).

final processed depth final processed depth

in simulation in real world
1 . - - I '_,
Simulation Depth Clip S:;;S;E:r:l?ri}llfsait; Hole%ﬁ”ing + Spatial Depth Clip Raw Depth Real World
emporal filter

Figure 5: We bridge the visual gap between simulation and real world by applying pre-processing techniques.
We use depth clipping, Gaussian noise and random artifacts in simulation, and depth clipping and hole-filling,
spatial and temporal filters in the real world.



4 Experimental Results

Robot and Simulation Setup. We use IsaacGym [119] as the simulator to train all the policies. To
train the specialized parkour skills, we construct large simulated environments consisting of 40 tracks
and 20 obstacles on each track. The obstacles in each track have linearly increasing difficulties based
on the obstacle property ranges in Table 1. We use a Unitree Al and a Unitree Gol that are equipped
with Nvidia Jetson NX for onboard computation and Intel RealSense D435 for onboard visual sensing.
More details are in the supplementary.

Climb Leap Crawl Tilt
0.2 ~0.5m 0.4~0.7m 0.32 ~0.15m 0.32 ~ 0.25m
e T
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Figure 6: Real-world indoor quantitative experiments. Our parkour policy can achieve the best performance,
compared with a blind policy and built-in MPC controllers. We control the MPC in A1 special mode by
teleoperating the robot lower down or tilt the body during crawling and tilt respectively.
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Vision is crucial for learning parkour. We compare the Blind baseline with our approach. Shown in
Table 2, without depth sensing and relying only on proprioception, the distilled blind policy cannot
complete any climbing, leaping or tilting trials and can only achieve a 13% success rate on crawling.
This is expected, as vision enables sensing of the obstacle properties and prepares the robot for

execute agile skills while approaching the obstacles. RL fine-tuning starts for Ours
S . . . 1.0
RL pre-training with soft dynamics constraints enables @~ Oracles w/ Soft Dyn (Ours)

parkour skills’ learning. We compare the RND, Oracles o
w/o Soft Dyn and ours (Oracles w/ Soft Dyn), all trained
using privileged information without the distillation stage.
‘We aim to verify that our method of RL pre-training with
soft dynamics constraints can perform efficient exploration.
In Figure 7, we measure the average success rates of each ;| o
method averaged over 100 trials across all the parkour o Training Progress e

. . Lo . S . Figure 7: Comparison of specialized ora-
skills that require exploration including climbing, leaping, o "o " o dynamics constraints
crawling and tilting. We trained using three random seeds  with baselines averaged across every skill and
for each method to measure the standard deviations. Our three trials.
method using RL pre-training with soft dynamics constraints can achieve much faster learning
progress and a better final success rate around 95%. We notice that RND struggles to learn meaningful
behaviors with scenarios that require fine-grained maneveurs such as crawling through a thin slit, due
to its tendency to reach states where future states are difficult to predict. Both RND and Oracles w/o
Soft Dyn cannot make any learning progress on climbing and leaping, the two most difficult parkour

skills. More plots showing the success rates for each skill separately are in the supplementary.

0.5

Success Rate

Recurrent networks enable parkour skills requiring memories. We compare the MLP baseline
with ours using a GRU to parameterize the vision-based parkour policy. Shown in Table 2, the
MLP baseline cannot learn the climbing and leaping skills and achieve much lower performance on
crawling and tilting. Both climbing and leaping requires the robot to hold a short-term memory of
the past visual perceptions. For example, during climbing when the robot has its front legs on the
obstacles, it still needs memory about the spatial dimensions of the obstacle captured in past depth
images to control the rear legs to complete the climbing.

Distillation is effective for Sim2Real. We compare the RMA baseline and the No Distill baseline
with ours. Although RMA can achieve similar performance on one skill that it is trained on, i.e. tilting,
RMA fixes the network parameters of the MLP which processes the latent embeddings of the backbone
GRU, and directly copies them from the specialized skill to the distilled policy. Consequently, it
cannot distill multiple specialized skill policies, which have different MLP parameters, into one
parkour policy. No Distill cannot learn climbing, leaping and tilting due to the complexity of training
directlv from visual observations without nrivileeed information.



Cheng, Xuxin, Kexin Shi, Ananye Agarwal, and Deepak Pathak. "Extreme parkour with
legged robots." arXiv preprint arXiv:2309.14341 (2023).

Figure 1: Extreme Parkour: Low-cost robot with imprecise actuation can perform precise athletic behaviors
directly from a high-dimensional image without any explicit mapping and planning. The robot is able to long
jump across gaps 2 x of its own length, high jump over obstacles 2x its own height, run over tilted ramps, and
walk on just front two legs (handstand) — all with a single neural network operating directly on depth from a
single, front-facing camera. Parkour videos at https: //extreme-parkour.github.io/.



of these papers, we propose a conceptually simple framework that results in more extreme parkour
behaviors. The simplicity comes from three ideas: (i) instead of privileged abstractions, we use
scandots as privileged information that generalizes across terrain geometries, (ii) allowing the policy
to decide its own heading at deployment depending on the obstacle. This allows us to demonstrate
the capability of jumping across tilted ramps. And (iii) a unified general-purpose reward principle.
Furthermore, we are able to cross gaps that are upto 2 x the length of the robot and jump obstacles
that are 2 x its height, whereas concurrent work using the A1 robot jumps at most 1.5 its height and
1.5x its length (Table 1).

Method Robot Climb Gap Ramp Handstand
Rudin et. al [31] AnymalC 1.1 0.75 X X
Hoeller et. al [12]* AnymalC 2 1.5 X X
Zhuang et. al [47]* Unitree-A1l 1.6 1.5 X X
Extreme Parkour (ours) Unitree-Al 2 2 37° v

Table 1: Comparison of parkour setups. Starred papers in 2nd and 3rd row are
concurrent works (recently released). The numbers in Climb and Gap denote
the relative size of obstacles with respect to quadruped’s height and length
respectively. Notably, our method is able to push the low-cost Al robot to
extreme scenarios which are twice the height and length of robot. Anymal 1s
an industry-standard high-quality robot and therefore much more expensive.



Phase 1
Teacher

XY} Action

Heading

Proprioception

Deepcopy Supervise

)
'

Depth
Image
v
I| Actor By
? P

&} Student
4 Action

Proprioception / &B MLP ‘ GRU

Figure 2: Training overview. In phase 1, we use RL to learn a locomotion policy with access to privileged
information like environment parameters and scandots [2] in addition to heading direction from waypoints. We
use Regularized Online Adaptation (ROA)[9] to train an estimator to recover environmental information from
the history of observations. In phase 2, we distill from scandots into a policy that operates from onboard depth
and automatically decides its heading (yaw) direction conditioned on the obstacle.
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3.1 Unified Reward for Extreme Parkour

The rewards used in [2] do not transfer directly to the parkour case. The robot cannot follow arbitrary

direction commands and instead must have the freedom to choose the optimal direction. Instead of

randomly sampling directions, we compute direction using waypoints placed on the terrain (Fig. 3) as

A p—x

w= T

[Ip —x||

where p is the next waypoint location and x is robot location in the world frame. The velocity tracking
reward is then computed as

(1)

Ttracking = mm( <V, aw) ) chd) (2)

where v € R? is the robot’s current velocity in world frame and v.,s € R is the desired speed. Note
that [2] tracks velocity in the base frame but world frame is used. This is done to prevent the robot
from exploiting the reward and learning the unintended behavior of turning around the obstacle.

While the above reward is sufficient for diverse parkour behavior, for challenging obstacles the robot
tends to step close to the edge to minimize energy usage. This behavior is risky and does not transfer

well to real settings. We therefore add a term to penalize foot contacts near terrain edges.

4
Velearance = — Z Ci M[pz] (3)
i=0

¢; is 1 if ith foot touches the ground. M is a boolean function which is 1 iff the point p; lies within
Scm of an edge. p; is the foot position for each leg.

The rewards defined above typically lead to a gait that uses all four legs. However, a defining feature
of parkour is walking in different styles that are aesthetically pleasing but may not be biomechanically
optimal. To explore this diversity, we introduce a term to track a desired forward vector using the
same inner product design principle, which can be controlled by the operator at test time.

o A 2
Fstylized = w- [05 . <Vfwd,C> aF 05} (4)
where V4,4 is the unit vector pointing forward along the robot’s body, € is also a unit vector indicating
the desired direction and W is a binary number to switch the reward on/off. In our case, we train the

robot to do a handstand and choose & = [0,0, —1]". W is sampled randomly in {0,1} at training time
and controlled via remote at deployment time.
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Loguercio, Antonio, Elia Kaufmann, René Ranftl, Matthias Miller, Vladlen Koltun, and Davide
Scaramuzza. "Learning high-speed flight in the wild." Science Robotics 6, no. 59 (2021): eabg5810.

Quadrotors are agile. Unlike most other machines, they can traverse extremely complex environments at high
speeds. To date, only expert human pilots have been able to fully exploit their capabilities. Autonomous opera-
tion with onboard sensing and computation has been limited to low speeds. State-of-the-art methods generally
separate the navigation problem into subtasks: sensing, mapping, and planning. Although this approach has
proven successful at low speeds, the separation it builds upon can be problematic for high-speed navigation in
cluttered environments. The subtasks are executed sequentially, leading to increased processing latency and a
compounding of errors through the pipeline. Here, we propose an end-to-end approach that can autonomously
fly quadrotors through complex natural and human-made environments at high speeds with purely onboard
sensing and computation. The key principle is to directly map noisy sensory observations to collision-free trajec-
tories in a receding-horizon fashion. This direct mapping drastically reduces processing latency and increases ro-
bustness to noisy and incomplete perception. The sensorimotor mapping is performed by a convolutional
network that is trained exclusively in simulation via privileged learning: imitating an expert with access to privi-
leged information. By simulating realistic sensor noise, our approach achieves zero-shot transfer from simulation
to challenging real-world environments that were never experienced during training: dense forests, snow-covered
terrain, derailed trains, and collapsed buildings. Our work demonstrates that end-to-end policies trained in simu-
lation enable high-speed autonomous flight through challenging environments, outperforming traditional ob-
stacle avoidance pipelines.
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Fig. 6. Method overview. (A) Our offline planning algorithm computes a distribution of collision-free trajectories to follow a reference trajectory. The trajectories are
computed with M-H sampling and are conditioned on complete 3D knowledge of the environment, which is represented by a point cloud. (B) A sensorimotor agent is
trained with imitation learning to predict the best three trajectories from the estimated depth, the drone’s velocity and attitude, and the desired direction that encodes
the goal. (C) The predictions are projected on the space of polynomial trajectories and ranked according to their predicted collision cost ¢, The trajectory with the lowest
predicted cost ¢ is then tracked with a model-predictive controller. If multiple trajectories have similar predicted cost (within a 5% range of the minimum ¢ * = min ¢),
the one with the smallest actuation cost is used.
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Our approach consistently outperforms the baselines in all environments and at all speeds. Sample observations from these environments are shown in fig. S4.



O’Connell, Michael, Guanya Shi, Xichen Shi, Kamyar Azizzadenesheli, Anima Anandkumar,
Yisong Yue, and Soon-Jo Chung. "Neural-fly enables rapid learning for agile flight in strong
winds." Science Robotics 7, no. 66 (2022): eabm6597.

Executing safe and precise flight maneuvers in dynamic high-speed winds is important for the ongoing commoditiza-
tion of uninhabited aerial vehicles (UAVs). However, because the relationship between various wind conditions
and its effect on aircraft maneuverability is not well understood, it is challenging to design effective robot controllers
using traditional control design methods. We present Neural-Fly, a learning-based approach that allows rapid
online adaptation by incorporating pretrained representations through deep learning. Neural-Fly builds on two
key observations that aerodynamics in different wind conditions share a common representation and that the
wind-specific part lies in a low-dimensional space. To that end, Neural-Fly uses a proposed learning algorithm,
domain adversarially invariant meta-learning (DAIML), to learn the shared representation, only using 12 minutes of
flight data. With the learned representation as a basis, Neural-Fly then uses a composite adaptation law to update a set
of linear coefficients for mixing the basis elements. When evaluated under challenging wind conditions generated
with the Caltech Real Weather Wind Tunnel, with wind speeds up to 43.6 kilometers/hour (12.1 meters/second), Neural-Fly
achieves precise flight control with substantially smaller tracking error than stateof-the-art nonlinear and adaptive
controllers. In addition to strong empirical performance, the exponential stability of Neural-Fly results in robustness
guarantees. Last, our control design extrapolates to unseen wind conditions, is shown to be effective for outdoor
flights with only onboard sensors, and can transfer across drones with minimal performance degradation.
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Fig. 2. Offline meta-learning and online adaptive control design. (A) The online adaptation block in our adaptive controller. Our controller leverages the meta-trained
basis function ¢, which is a wind-invariant representation of the aerodynamic effects, and uses composite adaptation (that is, including tracking error-based and prediction
error-based adaptation) to update wind-specific linear weights 4. The output of this block is the wind-effect force estimate, f = ¢d. (B) The illustration of our meta-learning
algorithm DAIML. We collected data from wind conditions {w, ---, wi} and applied Algorithm 1 to train the ¢ net. (C) The diagram of our control method, where the gray
part corresponds to (A). Interpreting the learned block as an aerodynamic force allows it to be incorporated into the feedback control easily.



Ellipse diameter: 3m x 2.5m
Lap time: 5s

Fig. 1. Agile flight through narrow gates. (A) Caltech Real Weather Wind Tunnel system, the quadrotor UAV, and the gate. In our flight tests, the UAV follows an agile
trajectory through narrow gates, which are slightly wider than the UAV itself, under challenging wind conditions. (B and C) Trajectories used for the gate tests. In (B), the
UAV follows a figure-8 through one gate, with a wind speed of 3.1 m/s or time-varying wind condition. In (C), the UAV follows an ellipse in the horizontal plane through
two gates, with a wind speed of 3.1 m/s. (D and E) Long-exposure photos (with an exposure time of 5 s) showing one lap in two tasks. (F to ) High-speed photos (with a
shutter speed of 1/200 s) showing the moment the UAV passed through the gate and the interaction between the UAV and the wind.
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Davide  Scaramuzza. "Champion-level drone racing using deep reinforcement
learning." Nature 620, no. 7976 (2023): 982-987.

First-personview (FPV) drone racing is atelevised sportin which professional
competitors pilot high-speed aircraft through a 3D circuit. Each pilot sees the
environment fromthe perspective of their drone by means of video streamed from an
onboard camera. Reaching the level of professional pilots with an autonomous drone
ischallenging because the robot needs to fly atits physical limits while estimating its
speed and location inthe circuit exclusively from onboard sensors'. Here we
introduce Swift, an autonomous system that can race physical vehicles at the level of
the human world champions. The system combines deep reinforcement learning (RL)
insimulation with data collected in the physical world. Swift competed against three
human champions, including the world champions of two international leagues, in
real-world head-to-head races. Swift wonseveral races against each of the human
champions and demonstrated the fastest recorded race time. This work represents a
milestone for mobile robotics and machine intelligence?, which may inspire the
deployment of hybrid learning-based solutions in other physical systems.
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Fig.2 | The Swift system. Swift consistsof two keymodules: a perception
systemthat translates visualand inertial informationinto alow-dimensional
state observationanda control policy that maps this state observationto
control commands. Control commands specify desired collectivethrustand
bodyrates, the same control modality that thehuman pilots use.a, The
perceptionsystemconsists of a VIO module that computesa metric estimate of
the drone state from cameraimagesand high-frequency measurements
obtained by aninertial measurement unit (IMU). The VIO estimate is coupled
with aneural network thatdetectsthe corners of racinggatesin the image

+ o)

v
Perception _Observed state
residual

Ground-truth state

stream. The corner detections are mapped toa 3D pose and fused with the VIO
estimate using aKalman filter.b, We use model-free on-policy deep RLto train
the control policy in simulation. During training, the policy maximizesareward
thatcombinesprogress towards the centre of thenext racing gate witha
perceptionobjective to keep the next gate in the field of view of the camera. To
transfer the racing policy from simulation to the physical world, we augment
the simulation with data-drivenresidualmodels ofthe vehicle’s perceptionand
dynamics. These residual models areidentified from real-world experience
collected ontherace track. MLP, multilayer perceptron.



a Droneracing: human versus autonomous

S Human pilot

_$~._ Autonomous drone (ours)

b Head-to-head competition

Fig.1|Droneracing.a, Swift (blue) raceshead-to-head against Alex Vanover,
the 2019 Drone Racing League world champion (red). The track comprises
sevensquare gates that must be passed inorderineachlap. Towinarace,a
competitor has tocomplete three consecutive laps beforeits opponent.

b, Aclose-up view of Swift, illuminated with blue LEDs, and ahuman-piloted
drone, illuminated with red LEDs. The autonomous drones used in this workrely

22 v,
4

only ononboard sensory measurements, with no support from external
infrastructure, such as motion-capturesystems.c, Fromleft toright: Thomas
Bitmatta, Marvin Schaepper and Alex Vanover racingtheir drones throughthe
track.Each pilot wearsaheadsetthatshowsavideostream transmitted in real
time froma cameraaboard their aircraft. The headsets provide animmersive
‘first-person-view’ experience. ¢, Photo by Regina Sablotny.
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b Head-to-head racing results

Number Best . Win
of races time-to-finish Wins  Losses ratio
A. Vanover versus Swift 9 17.956 s 4 5 0.44
T. Bitmatta versus Swift 7 18.746 s 3 4 0.43
M. Schaepper versus Swift 9 21.160 s 3 6 0.33
Swift versus human pilots 25 17.465 s 15 10 0.60

Fig.3|Results. a, Lap-time results. We compare Swift against the human pilots
intime-trial races. Laptimesindicatebestsingle lap times and best average
timesachievedinaheatofthree consecutive laps. Thereported statistics are
computed over adatasetrecorded duringone week onthe racetrack, which
corresponds to483(115) data points for Swift,331(221) for A. Vanover, 469
(338)for T. Bitmattaand 345(202) for M. Schaepper. The first number is the
number of singlelaps and the second is the number of three consecutive laps.
Thedarkpointsineachdistributioncorrespondtolapsflowninrace conditions.
b, Head-to-head results. We report the number of head-to-head races flown by
each pilot, the number of winsand losses, aswellasthe winratio.
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Fig.4 | Analysis. a, Comparison of the fastest race of each pilot, illustrated by
the time behind Swift. The time difference from the autonomous drone is
computed asthe time sinceit passed the same position on the track. Although
Swiftisglobally faster thanall human pilots, itis not necessarily faster onall
individual segments of the track. b, Visualization of where the human pilotsare
faster (red) and slower (blue) compared with the autonomous drone. Swiftis
consistently faster atthe start and in tight turns, such as the split S. ¢, Analysis
of the manoeuvre after gate 2. Swift in blue, Vanover in red. Swift gains time
againsthuman pilots in thissegmentas it executes a tighter turn while

maintaining comparable speed. d, Analysis of the split Smanoeuvre. Swift
inblue, Vanoverinred. The splitS isthe most challengingsegment inthe race
track, requiring a carefully coordinated roll and pitchmotion that yields a
descending half-loop through the two gates. Swift gains time against human
pilots on this segmentasitexecutes atighter turn withless overshoot.

e, lllustration of track segmentsused for analysis. Segment1is traversed once
at the start, whereas segments2-4 are traversedineachlap (three times over
the courseofarace).
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