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Abstract—This paper introduces Unity RL Playground, an
open-source reinforcement learning framework built on top of
Unity ML-Agents. Unity RL Playground automates the process of
training mobile robots to perform various locomotion tasks such as
walking, running, and jumping in simulation, with the potential for
seamless transfer to real hardware. Key features include one-click
training for imported robot models, universal compatibility with
diverse robot configurations, multi-mode motion learning
capabilities, and extreme performance testing to aid in robot
design optimization and morphological evolution. The attached
video can be found at https://linqgi-ye.github.io/video/unity25.mp4
and the code is available at
https://github.com/loongOpen/Unity-RL-Playground/.

I. INTRODUCTION

Reinforcement learning (RL) has emerged as a powerful tool
for training mobile robots to perform complex locomotion tasks
[1-3]. However, the process of setting up simulation
environments, defining reward functions, and importing new
robots remains time-consuming and technically challenging. To
address these issues, we present Unity RL Playground, a unified
framework that significantly simplifies the RL workflow for
mobile robots.

In recent years, the field of robotic reinforcement learning
has witnessed remarkable advancements, thanks to the
development of specialized frameworks that streamline the
process of training and deploying RL algorithms on robotic
systems. Below is a detailed overview of several prominent
robotic RL frameworks:

Legged Gym [4] is a framework designed specifically for
legged robots, facilitating the development of locomotion
policies. By leveraging GPU-accelerated physics simulations, it
enables researchers to train RL algorithms efficiently. The
framework supports a range of legged robots and terrain types,
providing a robust testbed for locomotion research. It emphasizes
rapid experimentation and policy deployment, allowing
researchers to bridge the sim2real gap more effectively.

Humanoid-Gym [5] is an open-source RL framework
tailored for humanoid robots. Built upon NVIDIA Isaac Gym, it
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enables the training of locomotion skills with a focus on
zero-shot sim2real transfer. Humanoid-Gym incorporates
domain randomization and advanced reward functions to
enhance the robustness of trained policies. The framework also
supports a variety of humanoid robots, facilitating research into
complex manipulation and locomotion tasks.

IsaacLab [6] is a comprehensive robotics simulation toolkit
from NVIDIA. It provides high-fidelity physics and
photorealistic rendering capabilities, enabling the creation of
complex and realistic simulation environments. IsaacLab
supports a wide range of robotic platforms and sensors, making it
suitable for various robotics applications. The unified API allows
for seamless integration of RL algorithms, making it an ideal
platform for developing and testing advanced RL policies.

MuJoCo Playground [7] is an open-source framework for
robot learning that leverages the MuJoCo physics engine. It is
designed to facilitate rapid iteration and deployment of sim2real
RL policies. The framework supports a variety of robotic
platforms, including quadrupeds, humanoids, and dexterous
hands. MuJoCo Playground incorporates on-device rendering
and domain randomization techniques to enhance sim2real
transfer. It also provides pre-built environments and benchmarks
to streamline the development process.

Genesis [8] is a framework that focuses on generative physics
modeling for robotics. It enables the creation of realistic and
diverse simulation environments through a data-driven approach.
Genesis supports various robotic tasks, including manipulation
and locomotion. By leveraging generative models, it can
generate new simulation scenarios on-the-fly, facilitating
large-scale experimentation and policy training.

While these frameworks have significantly advanced the
field of robotic RL, they come with certain limitations. The setup
and configuration processes can be complex, requiring expertise
in both robotics and RL. Development cycles are often lengthy,
due to the need for extensive customization and tuning.
Additionally, the high computational requirements, particularly
the need for GPU acceleration, can limit the accessibility of these
frameworks.

Unity ML-Agents [9] provides a user-friendly and versatile
platform for RL research. Unity ML-Agents supports both
Windows and Ubuntu operating systems and does not require
GPU acceleration for training, making it accessible to a broader
audience. Unity ML-Agents is designed to be intuitive and easy
to use, with a focus on rapid development of games. However, it
is not specifically tailored for robotic applications.


https://linqi-ye.github.io/video/unity25.mp4
https://github.com/loongOpen/Unity-RL-Playground/

Building upon the strengths of Unity ML-Agents, we have
developed Unity RL Playground, a dedicated RL framework for
mobile robots. Unity RL Playground shares a unified codebase,
ensuring consistency across different robot platforms. It is
designed to be operated with minimal programming expertise,
allowing users to easily import their custom robot models for
comprehensive multi-modal motion training.

The primary contribution of this work is the development of
Unity RL Playground, a novel framework that greatly simplifies
the complexity of robotic RL frameworks. By leveraging the
strengths of Unity ML-Agents and tailoring it specifically for
mobile robots, Unity RL Playground provides a “one-click”
solution for training and deploying RL policies. Users can import
various robot models into the simulation environment and,
without any programming, enabling them to automatically learn
multiple motion skills such as walking, running, and jumping.
The framework also facilitates easy migration of trained policies
to real hardware.

II. UNITY RL PLAYGROUND OVERVIEW

A. Software Interface

Unity RL Playground consists of a main menu interface and a
training interface, as shown in Fig. 1 and Fig. 2, respectively.
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Figure 1. The main menu of Unity RL Playground. The user can import their

robot model and start training on one click.

Figure 2. The training interface. The robot is trained parallelly with CPU.

B. Key Features
(1) One-Click Training for Imported Robot Models

Users import a robot URDF file and select the training goal.
The framework automatically generates locomotion policies by
iteratively optimizing reward functions through reinforcement
learning pipeline. It eliminates manual reward shaping and
tedious coding, reducing setup time from days to minutes.

(2) Universal Configuration Compatibility

The framework dynamically adjusts simulation parameters to
accommodate diverse robot morphologies, including bipeds,
quadrupeds, and wheeled robots. It enables rapid prototyping by
testing how structural variations (e.g., leg length, wheel diameter)
affect motion performance, facilitating morphology-aware RL
training.

(3) Multi-Mode Motion Learning

Unity RL Playground leverages the instruction learning
technique [10] to learn various locomotion behaviors. The
framework autonomously switches between walking, running,
and jumping based on the selected task objective.

(4) Extreme Performance Testing

Unity RL Playground possesses the capability to undertake
extreme performance testing by exploring the performance
boundaries of robots under given constraints. This includes
pushing robots to their limits in various scenarios, such as
extreme terrains, high speeds, and heavy loads, to evaluate their
durability, agility, and adaptability.

C. Technical Highlights

The underlying learning framework of the Unity RL
Playground is depicted in Fig. 3. This framework showcases two
notable technical highlights: the Instruction Learning Technique
and the Adaptive Learning Curriculum.
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Figure 3. The learning framework of Unity RL Playground.



(1) The Instruction Learning Technique

The instruction learning technique, introduced in our prior
work [10], leverages a combination of a feedforward signal and a
scaled output from a neural network (MLP) as the action sent to
the robot. This approach offers enhanced efficiency and
flexibility compared to imitation learning. In the Unity RL
Playground, an auto-configuration module automatically selects
the feedforward signal, action scaling factor, and reward function
weights based on the robot type and target motion.

(2) The Adaptive Learning Curriculum

We have further developed an innovative adaptive
curriculum learning method that plays a pivotal role in
optimizing the training process within the Unity RL Playground.
This method meticulously adjusts the weights of the reward
function in a dynamic and adaptive manner throughout the
training period. By doing so, it ensures that the robotic agent can
more effectively and efficiently learn to perform the desired
target motion. This adaptive approach takes into account various
factors, such as the progress of the training, the current
performance of the agent, and the complexity of the target
motion, to tailor the learning experience and enhance the overall
outcome.

III. FRAMEWORK ARCHITECTURE
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Figure 4. Components of Unity RL Playground.

A. Components

The Unity RL Playground is composed of several key
modules that work together to facilitate mobile robots RL tasks.
We utilize both the components developed specifically for Unity
RL Playground and existing Unity components, leveraging the
extensive functionality and features provided by the Unity
platform.

Starting with the user interface (see Fig. 1), which provides
the user with an interactive environment to import robot model
and select the target motion. The feedforward generator can

generate a reference motion for the robot as a feedforward motor
command. The URDF importer module is responsible for
importing the robot URDF (United Robotics Description Format)
files, essential for setting up robotic models. The
auto-configuration module streamlines the process of
configuring RL parameters and settings, ensuring that the
training and simulation modules are correctly set up for the
imported robot model. This module feeds into both the RL
training module (supporting algorithms like PPO and SAC) and
the simulation module (powered by PhysX), allowing for
effective training and physical simulations of the robotic models.
The sim2real module can send motor commands to the real robot
through EtherNet for real-world implementations, helping to
ensure that trained policies can be easily deployed in physical
robots. Furthermore, we have developed a state alignment tool
that enables real-time comparison of states between the real robot
and the simulation model, facilitating the alignment of real robot
states with those in simulation for swift migration of trained
behaviors. The online learning module represents a novel
endeavor, combining the sim2real communication and the RL
training module to leverage real-world robotic motion data for
training, thereby overcoming the sim2real discrepancy.

Overall, these modules work in unison to provide a
comprehensive and efficient framework for RL research and
development within Unity.

B. Workflow
(1) Import robot URDF

The user clicks “Import URDF” to import their robot model.
Then select the robot type (currently three options available:
biped, quadruped, or leg-wheeled). The framework
automatically configures the model for simulation.

(2) Select target motion

The user selects the simulation task objectives from the
drop-down box. We provide three motion objectives for each
kind of robot. They are: walk, run, and jump for biped robot; trot,
bound, and pronk for quadruped robot; drive, walk, and jump for
leg-wheeled robot. The framework uses the automatic
configuration module to initialize the environment and prepare it
for training.

(3) Start training

The user clicks “Start” button to start the RL training. The RL
training module applies RL algorithms to optimize the robot’s
locomotion policy. Training progress is monitored in real-time
through Unity’s visualization tools.

Once trained, the system outputs the optimized locomotion
policy. The user can visualize and test the generated motions
within the simulation environment.



IV. RESULTS

A. Simulation Training

We have utilized the Unity RL Playground to train various
models of bipedal, quadrupedal, and leg-wheeled robots on
diverse tasks such as walking, running, and jumping. The
simulation results have demonstrated their remarkable ability to
swiftly learn and execute various movements. Furthermore, we
have tested the performance of the bipedal robots in challenging
environments, including rotating staircases laden with obstacles
and realistic household settings. These tests have showcased
their robustness and adaptability, further validating the

effectiveness of our training approach. The robots have
consistently demonstrated smooth and efficient movement
patterns, even in complex and dynamic scenarios, underscoring
their potential for real-world applications. Some of the results are
shown in Figs. 5-9.
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Figure 6. The trained motion for a quadruped robot (Unitree Go2).
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Figure 7. The trained motion for a leg-wheeled robot (Tronl).

Figure 9. Biped robot tested in household scene (Ranger Max).

The Unity RL Playground stands out for its impressive
versatility and extensive scalability. With minimal modifications,
it can seamlessly adapt to accommodate a wide array of robotic
types beyond the conventional ones, such as the monopod robot,
jumping bicycle, point-feet biped, and straight-legged quadruped,
among others, as shown in Fig. 10.
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Figure 10. Unity RL Playground extendibility.

B. Sim2Real Experiments

We tested the trained policy for a biped robot and a
quadruped robot using the sim2real module. The experiments
involved transferring the learned behaviors from simulations to
real-world  scenarios, encompassing bipedal walking,
quadrupedal walking, and quadrupedal jumping, as shown in Fig.
11 and Fig. 12. The results demonstrate the effectiveness of our
trained policies in real-world conditions. The biped robot
exhibited smooth and stable walking gaits, while the quadruped
robot showed agile and coordinated movements, including
proficient jumping abilities. These outcomes validate the
robustness and adaptability of our sim2real approach, reinforcing
the potential of Unity RL Playground for facilitating the seamless
deployment of robot control policies in real-world applications.

Figure 12. Sim2real experiment for a quadruped robot (Unitree Go2).

C. Real-World Online Learning
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Figure 13. The real-world online learning system (X02-Lite).

In addition to facilitating the transfer from simulation to
reality, Unity RL Playground can also be utilized for real-world
online learning. We have developed an online learning system
for biped robots based on Unity RL Playground, as illustrated in
Fig. 13. This system features an automatic reset capability,
enabling continuous learning and performance enhancement
through minimal human intervention. By leveraging online
learning, our system offers a novel pathway to bridge the
sim2real gap for robots, paving the way for advanced locomotion
behavior and enhanced adaptability in real-world environments.

D. Robot Structure Optimization

Utilizing the versatility and extreme performance testing
capabilities of Unity RL Playground, we can delve into
identifying the optimal robot configurations under certain
constraints. For example, Fig. 14 showcases an exploration of
how leg length affects walking speed, while Fig. 15 presents an
analysis of the impact of yaw joints on turning performance.
These investigations highlight the potential of Unity RL
Playground in facilitating the optimization of robotic designs
tailored to specific operational requirements.

Figure 14. Robot performance test for leg length.



Figure 15. Robot performance test for hip yaw joint.

V. DISCUSSION

Compared to other robot reinforcement learning frameworks
like Legged Gym, IsaacLab, and Mujoco Playground, Unity RL
Playground offers a distinctive set of advantages that make it
stand out. Its one-click training feature significantly simplifies
the process, lowering the barrier to entry for those new to
RL-based robot training. Furthermore, its versatility allows for
universal compatibility with a wide range of robot types and
structures. Despite these strengths, there are still areas where
Unity RL Playground can be improved, such as further validating
its sim2real transfer performance and extending its capabilities to
support more complex tasks beyond basic locomotion.

A. Advantages

e  Simplicity: One-click training significantly lowers the
barrier to entry for RL-based robot training.

e  Versatility: Universal compatibility with diverse robot
types and structures.

e Efficiency: Automates the RL workflow, reducing the
time and effort required for coding.

B. Limitations and Future Work

e Real-World Complexity: Further testing is needed to
fully validate the sim2real transfer performance.

e Extension to More Complex Tasks: We plan to
extend the framework to support tasks beyond basic
locomotion, e.g., whole-body control.

e  User Interface Improvements: Enhancements to the
user interface for better usability and accessibility.

VI. CONCLUSION

Unity RL Playground is designed to streamline and simplify
the complex process of training mobile robots using
reinforcement learning, particularly when it comes to integrating
new robots. Its distinctive features, including one-click training,
universal compatibility, multi-mode motion capabilities, and
extreme performance testing, position it as a highly versatile and
powerful tool for robot locomotion control and design
optimization. With ongoing development and further testing,
Unity RL Playground holds the transformative potential to
reshape the field of mobile robot locomotion. Our vision is to
establish Unity RL Playground as a product akin to Arduino,
thereby significantly lowering the barrier to entry for robot

reinforcement learning development and broadening its appeal to
a wider audience.
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