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Abstract— Output redefinition-based dynamic inversion 

(ORDI) control is applied to solve the control problem for 

multi-input-multi-output (MIMO) systems with no relative 

degree and is compared with the traditional dynamic 

extension-based dynamic inversion (DEDI) control. A MIMO 

system has no relative degree if its control matrix is singular, 

preventing the direct use of the powerful nonlinear control 

method, dynamic inversion. For this problem, dynamic 

extension is a traditional solution, which makes dynamic 

extension at the input side to achieve a relative degree. DEDI 

results in a fully linearized system of higher order. But the 

requirement to calculate the higher order derivatives of the 

output makes it difficult to apply to complex systems. ORDI 

provides a new solution for the existing problem. It achieves a 

relative degree by redefinition of a new output, leading to a 

partially linearized system cascaded with stable zero dynamics. 

ORDI is much easier to implement for complex systems and 

reduces the computational burden, though it has some 

performance limitations. A linear system example along with 

the application to a hypersonic flight vehicle are provided to 

illustrate the concept of ORDI and its differences with DEDI. 

I. INTRODUCTION 

Dynamic inversion, which is also called feedback 
linearization [1], is a powerful nonlinear control method. 
However, the precondition to use dynamic inversion is that the 
system has a well-defined relative degree. Consider the 
following multi-input-multi-output (MIMO) system 

   

 

x = f x + g x u

y = h x
                                    (1) 

where , ,n m x u y  ,        1 2, , ,
T

mg g g   g x x x x , 

and        1 2, ,
T

mh h h   h x x x x . According to [1], the 

system is said to have a relative degree  1,..., mr r  at a point 

ox  if   

(i)  =0
j

k

g f iL L h x ( L represents Lie derivative) for 

all1 j m  , for all 1 i m  for all 1ik r   and for all x  

in the neighborhood of ox .  

(ii) the m×m control matrix 
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A  

is nonsingular at ox x . 

The system has no relative degree if the matrix A  is 
singular. Therefore, dynamic inversion can’t be used since the 
inversion of A doesn’t exist. To solve this problem, the 
dynamic extension method is proposed in [1,2], where the 
input is viewed as a state of an extended dynamic system 
affected by a new input to achieve a relative degree. This 
method has been applied to many practical systems, such as 
aviation aircraft [1], quadrotor [3,4], car-like robot [5], 
manipulators [6,7], and hypersonic vehicle [8-10], just name a 
few. However, the dynamic extension method may introduce a 
significant complication in the design of the control law for 
the extended system. 

From the definition of relative degree [1], it can be seen 
that it is associated with the input-output map. Therefore the 
relative degree will change if the input or output is redefined. 
Dynamic extension changes the input-output map by 
redefinition of a new input. The other way to change the 
input-output map is to change the output. Thus it naturally 
leads to the concept of output redefinition. 

Output redefinition [11] is a traditional method applied to 
nonminimum phase systems. A nonminimum phase system 
refers to a system with unstable zero dynamics [1]. If a system 
has a relative degree smaller than the system order, there will 
be some remaining dynamics that can’t be included in the 
input-output map, which are called zero dynamics. Output 
redefinition can change the input-output map and thus obtain 
stable zero dynamics. Many methods are proposed to find a 
minimum phase output, such as the method through B-I norm 
form [11], the flatness-based approach [12] and the synthetic 
output method [13, 14]. Most recently, output 
redefinition-based dynamic inversion (ORDI) is presented in 
our previous work [15] to solve the control problem of 
nonminimum phase systems in a systematic way. In this paper, 
we will show that ORDI is also applicable to control MIMO 
systems with no relative degree, thus broaden the application 
range of ORDI. 

A detailed procedure is given on how to apply ORDI to 
MIMO systems with no relative degree. First, a new output is 
constructed to obtain a system that has a well-defined relative 
degree, and then dynamic inversion can be applied to the new 
output. The new output is constructed in a simple way, which 
is a linear combination of system states. The relative degree of 
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the new output is smaller than the system order, so there will 
be zero dynamics. To guarantee the zero dynamics be stable, 
the root locus approach is utilized to determine the feasible 
value for the combination coefficient. 

ORDI gives a new option to the control issue for MIMO 
systems with no relative degree. Compared to dynamic 
extension-based dynamic inversion (DEDI), some significant 
differences are shown: (1) DEDI achieves a relative degree by 
changing the input while ORDI achieves a relative degree by 
changing the output; (2) DEDI obtains a dynamic control law 
while ORDI obtains a static control law; (3) DEDI results in a 
system of higher order while ORDI results in a lower order 
system cascaded with a stable zero dynamics; (4) DEDI 
requires to calculate higher-order derivatives of the output, 
making it difficult for application to complex system. In 
comparison, ORDI is much easier to carry out and involves 
less computational burden; (5) DEDI is fully linearization, but 
ORDI is partially linearization and has some performance 
limitations when applied to nonlinear system. 

II. A LINEAR SYSTEM EXAMPLE 

Consider a simple linear system as follows: 

1 1 2 3 1 3 1 2, ,x u x x u x u u                      (2) 

where 
1 2,u u  are control inputs and 

1 2 3, ,x x x  are system 

states. The system outputs are 
1 1 2 2,y x y x  . The system 

has no relative degree since the derivatives of 
1y  and 

2y  are 

affected both by 
1u  and none by 

2u . The input-output 

dynamics can be written as follows 

1 1

32 2

0 1 0

1 0

y u

xy u

      
       

     
                        (3) 

Since the control matrix in (3) is singular, dynamic 
inversion can’t be directly applied to this system. 

A. Dynamic Extension-Based Dynamic Inversion Control 

To achieve a relative degree, dynamic extension can be 
made on the input side. For system (2), the dynamic extension 
can be done as follows: 

1 1u v                                         (4) 

where 
1v  is treated as a new input. With this definition, 

1u  

becomes a system state. Suppose the output commands are 
* *

1 2,x x , respectively, and denote the regulated outputs as 
*

1 1 1e x x  , 
*

2 2 2e x x  . Following the usual procedure, the 

outputs are differentiated until the input appears 

 
1 1 1 1 2 3 1 2 1 2 1, ; ,e u e v e x u e u u v                (5) 

Denote 
2 1 2 1v u u v   , it follows that 

 
1 1 2 2,e v e v                                    (6) 

Therefore the relative degree is  2, 2  now. The original 

system is fully linearized into system (6). Design the inputs as 
follows 

1 11 1 12 1 2 21 2 22 2,v k e k e v k e k e                    (7) 

where 
11 12 21 22, , ,k k k k  are positive control gains. Then the 

closed-loop system becomes  

 
1 11 1 12 1 2 21 2 22 2,e k e k e e k e k e                   (8) 

Therefore, by virtue of dynamic extension, the original 
system of order 3 is fully linearized into a 4th-order linear 
system which is asymptotically stable. 

B. Output Redefinition-Based Dynamic Inversion Control 

Recall system (2), 
1 2,x x  are affected only by 

1u  while 
3x  

is affected by both 
1u  and 

2u . With the output 
1x  unchanged, 

the other output 
2x  can be combined with 

3x  to construct a 

new output affected by both 
1u  and 

2u .  Take into 

consideration the command, the new output is designed as 

3 3 1 2e x e  , where 
1  is a positive coefficient to be 

designed. Taking the derivative of  
3e  yields  

  3 3 1 2 1 3 1 1 21e x x x u u                     (9) 

With the new output  1 3,
T

e e , the input-output dynamics 

becomes 

 
1 1

1 3 13 2

0 1 0

1 1

e u

xe u 

      
       

     
                   (10) 

The control matrix is nonsingular now and the relative 

degree of the new output is  1,1 . Design the control inputs as 

 

1

1 11

1 31 2 32

01 0

1 1

k eu

xk eu 


         

       
         

     (11) 

The closed-loop system becomes 

1 1 1 3 2 3,e k e e k e                              (12) 

where 
1 2,k k  are positive control gains.  

Now, since the relative degree 1 1 2   is smaller than the 
system order 3, there will be a 1st-order zero dynamics 

remaining. When the new output  1 3,
T

e e is driven to zero, it 

follows that 
3 1 2x e   and 

1 0u  . Substituting them into 

2e  yields the zero dynamics: 

2 1 2e e                            (13) 

Therefore even though the output 
2e  is altered to 

3e , the 

tracking error 
2e  can still converge to zero due to the stable 

zero dynamics (13). 

C. Simulation 

In the simulation, the initial values of the states are 
assumed in the origin. The control parameters are selected as 

11 12 21 22 4k k k k     for DEDI and 
1 1 2 2k k    for 

ORDI, respectively. The commands are given as 
* *

1 2 1x x  . 

Figure 1 shows the simulation results of DEDI and Figure 2 
shows the simulation results of ORDI. It can be seen that both 
methods achieve good tracking performance. 
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Figure 1.  Simulation results of DEDI 

 

Figure 2.  Simulation results of ORDI 

From this example, we can see the differences between 
DEDI and ORDI. They achieve a relative degree from two 
ways: DEDI by integral extension of a new input and ORDI by 
redefinition of a new output. As a result, DEDI leads to a 
dynamic control law and a higher-order closed-loop system, 
while ORDI results in a static control law and a lower-order 
closed-loop system cascaded with a zero dynamics system. In 
the next section, we will derive the ORDI control method for 
general MIMO systems with no relative degree. 

III. ORDI CONTROL FOR MIMO SYSTEMS WITH NO 

RELATIVE DEGREE 

As shown in [1], if a system has a relative degree which 
equals to the system order, then all the states can be expressed 
by the outputs and their derivatives. However, for a MIMO 
system with no relative degree, there will be some states that 
cannot be expressed by the outputs and their derivatives, 
which will be called by internal variable in this paper. It 
should be noted that internal variable is in the original 
coordinate and is different from the concept of internal state 
[1]. The ORDI control scheme includes two steps as shown in 
Figure 3. 

Step 1: Output redefinition 

In this step, a linear combination of the original outputs 
and the internal variables is constructed as a new output to 
obtain a relative degree and moreover to obtain stable zero 
dynamics. 

  

Dynamic 

inversion

System outputs

Stable zero dynamics

New input-output 

dynamics       

Output redefinition

Internal variables

1 2 ... my y y m my y  Pη

η

 

Figure 3.  Schematic diagram of ORDI 

For linear system with m outputs , 1,...,iy i m , by taking 

derivatives of each output until the input appears, with the 

derivation orders , 1,...,ir i m , the input-output dynamics 

can be written as 

     1 2

1 2 ... m
T

rr r

my y y  
 

Ax + Bu                   (14) 

where  1 2, ,...,
T

mu u uu  is the input vector,  
T

x ξ,η is 

the state vector. ξ  is the external state vector consists of the 

outputs and their derivatives; η  is the internal variable vector, 

with the internal dynamics 

η η
η = A x + B u                              (15) 

It is assumed that  rank mB  so the system has no 

relative degree. To achieve a relative degree, we perform 
output redefinition by replacing one of the outputs, for 
instance, the last one by 

m my y Pη                               (16) 

where P  is a vector to be designed. Then the new 
input-output dynamics becomes 

     1 2

1 2 ... m
T

rr r

my y y   
 

Ax Bu                 (17) 

The selection of P  should meet two requirements: 

1) The new output vector has a relative degree, i.e. 

 rank mB  ; 

2) The following zero dynamics are stable: 

  
T-1

η ηη = A - B B A 0,η                         (18) 

Similarly, for the nonlinear system 

         

   

1 2

1 2 ... m
T

rr r

my y y  
 

η η

F x + G x u

η = F x + G x u

          (19) 

Assume  rank m  G x . Replacing one of the outputs by  

m my y Pη                                   (20) 

Then the new input-output dynamics becomes 

         1 2

1 2 ... m
T

rr r

my y y  
 

F x + G x u          (21) 

The selection of P  should also meet two requirements: 

1) The new output vector has a relative degree, i.e. 

 rank m   G x  ; 

2) The following zero dynamics are locally stable: 

       
-1

η ηη = F 0,η - G 0,η G 0,η F 0,η            (22) 

To meet the two requirements, we can design the vector 
P  by root locus method. Through this step, the no relative 
degree problem is solved and meanwhile a stable zero 
dynamics is obtained, which forms the foundation of the 
second step. 

Step 2: Dynamic inversion  

In this step, dynamic inversion control is performed on the 
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new input-output dynamics for linearization and achieving 
the desired control objective. Since the new control output 
vector has a well-defined relative degree, dynamic inversion 
control can be easily applied to achieve output tracking. 
What’s more, since the zero dynamics is rendered stable in 
the first step, the overall system is guaranteed to be stable.  

From the procedure above, it can be observed that ORDI 
method has some properties very different from the traditional 
DEDI method, as shown in Table I. 

TABLE I.  COMPARISON OF ORDI AND DEDI 

 ORDI DEDI 

Way to Achieve a 

Relative Degree 

Output redefinition 

(Change output) 

Dynamic extension 

(Change input) 

Control Law Static Dynamic 

Closed-loop System  

Lowe-order linear 

system with stable 

zero dynamics 

Higher-order linear 
system 

Computational 

Burden 
Low High  

Linearization Level Partially linearization Fully linearization 

 

In the next section, a nonlinear example will be used to 
further illustrate the implementation of ORDI method and 
compare it with the DEDI method. 

IV. APPLICATION TO A HYPERSONIC FLIGHT VEHICLE 

In [15], ORDI is applied to an air-breathing hypersonic 
vehicle model, which exhibits nonminimum phase behavior. 
In this paper, we will apply ORDI to another hypersonic flight 
vehicle model [8] which has a different configuration, and, 
rather than be nonminimum phase, it has no relative degree. 
Following [8], the longitudinal dynamics of the hypersonic 
flight vehicle described by a set of differential equations for 
velocity V , flight-path angle  , altitude h , pitch angle  , 

and pitch rate q  are as follows 

 

 

       

2

2 2

cos / sin /

sin

sin / cos /

, /yy yy

V T D m r

h V

L T mV V r Vr

q q M I

  



   



  



   

 

       (23) 

The expressions of the thrust T , the lift L , the drag D , 

and the pitching moment yyM  are given by 

     

, ,L D T

yy M M e M

L qSC D qSC T qSC

M qSc C C C q 

  

    
        (24) 

where 

 

     
   

2

2 6

2

0.6203 , 0.6450 0.004338 0.00377

0.02576 1

0.0224 0.00336 1

0.035 0.036617 5.3261 10

/ 2 6.796 0.3015 0.2289

L D

T

M

M

M e e e

C C

if
C

if

C

C q c V q

C c

  

 

 

  

 

  



   


 

 

    

   

 

 (25) 

In this study, TC c   with 0.02576c   is taken for 

convenience. 

The control inputs are the throttle setting   and the 

elevator deflection 
e . The outputs are the velocity V  and 

the altitude h . The commanded desired values of velocity 

and altitude are denoted by *V  and *h , respectively. The 

objective is to let the tracking errors *

Ve V V  , *

he h h   

converge to zero asymptotically. 

To begin with, we will first examine the relative degree of 
this system. System (23)  can be rewritten in an affine form: 

 sin ,

,

V V

q q e

V f g

h V f g

q q f g

 



  

 

 

  

  

                              (26) 

where 

 

     
 

   

2

2 2

/ sin / , cos /

/ cos /

sin /

/

/

V V

q M e M yy

q e yy

f D m r g qSc m

f L mV V r Vr

g qSc mV

f qSc C c C q I

g qScc I





 

  

 



 

   

  



    



      (27) 

In order to find out the relative degree of the system, take 
the derivative of the outputs until the input appears: 

 sin , sin cos h hh V h V V f g              (28) 

where 

sin cos , sin cosh V h Vf f f V g g g V           (29) 

From (26) and (28), it can be seen that the outputs V  and 

h  are affected both by   and none by 
e . Therefore the 

system has no relative degree. 

A. Dynamic Extension-Based Dynamic Inversion Control 

To achieve a relative degree, a second-order dynamic 
extension is appended to the input   

 
2 22 n n n c                         (30) 

where , n   are parameters to be designed (can also use 

c  ). The commanded value 
c  is viewed as the new 

input. Then the outputs  ,
T

V he e  are differentiated until the 

input appears   

 

 

3

11 12

4
21 22

V V c

h eh

e a b b

a b be





      
       

       

                       (31) 

The expressions of 
11 12 21 22, , , , ,V ha a b b b b  are given in [8].  

From (31) it can be seen that the relative degree of the system 

becomes  3, 4 . The dynamic inversion controller is 

designed as 
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1

11 12 1311 12

21 22 21 22 23 24

c V a V a V a V

e h a h a h a h a h

a k e k e k eb b

b b a k e k e k e k e






       

    
        

(32) 

where 
11 12 13 21 22 23 24, , , , , ,a a a a a a ak k k k k k k  are positive gains to 

be designed. The closed-loop system is  

 

 

3

11 12 13

4

21 22 23 24

V a V a V a V

h a h a h a h a h

e k e k e k e

e k e k e k e k e

   

    
                  (33) 

Obviously, the design process above is very difficult due 
to the calculation of the higher-order derivatives of the 
outputs. Besides, the control law obtained by DEDI is also 
very complex which will be computational burdensome. 

B. Output Redefinition-Based Dynamic Inversion Control 

To apply ORDI to the hypersonic vehicle, similar to the 
linear example, a new output is constructed as a linear 
combination of the system states. Recall the reason why the 

system has no relative degree is that V  and h  are affected 

both by    and none by 
e . Take into consideration that   

is affected by 
e , thus h  and   can be combined to 

construct a new output so that its second-order derivative is 

affected by both    and 
e .  

If the new output is chosen as 
he  , then as 

he   is 

driven to zero, 
he  will not converge to zero since the 

equilibrium of   is nonzero. In order to make 
he

 
converge to 

zero, the new output can be chosen as 
he e , where 

*e     with *  being the equilibrium of  . When 
* *,V h  are given, then 

* can be obtained by solving (23) 

with all the states derivatives being zero. 

Therefore the new output is selected as 

 ,
T

V he e e 
c

y  where   is a parameter to be designed. 

Denote 
c he e e  . The input-output dynamics 

corresponding to the new output are 

0VV V

c c ec c

ge f

g ge f  





      
        

      
                 (34) 

where 

sin cos

sin cos

c V q

c V

c q

f f f V f

g g g V

g g



 



  

 



  

 



                (35) 

The relative degree is  1,2 now, which means there is a 

second order (5-1-2 = 2) zero dynamics in this system. To 
obtain stable zero dynamics, a root locus method will be used 
to determine the coefficient  .  

For system (34), the inputs to keep zero outputs are 

10

0

0V V

c c ce

g f

g g f 






     

     
     

                   (36) 

By substituting (36) into the ,h   dynamics, the modified 

zero dynamics are as follows 

0sin ,he V f g                            (37) 

By inspection of (37), it can be observed that the 
combination coefficient    will affect the zero dynamics 

through 0 . To guarantee the zero dynamics be stable, the 

root locus approach is utilized to determine the feasible value 
of  . 

Figure 4 shows the root locus of the linearized zero 

dynamics at equilibrium  15060,110000,0,0.0312,0
T

. It can 

be observed that when   ranges from 1000 to 1, there are 

two real eigenvalues (one positive, one negative) which go 
away from the origin as   increases; when

 
  ranges from 1 

to 1000, there are two LHP complex eigenvalues. Their real 

parts remain at about 0.0235 and they go toward the real axis 
as   increases.  Therefore, in order to obtain stable zero 

dynamics,  should be a positive value.  

 

      (a) λ from -1000 to -1                         (b) λ from 1 to 1000 

Figure 4.  Root locus of linearized zero dynamics 

After  is determined, a dynamic inversion controller can 

be designed. According to (34), design the control inputs as 
follows 

1

11

21 22

0V c V V

c ce c c c c c

g k e f

g g k e k e f 







     
     

      
    (38) 

where 
11 21 22, ,c c ck k k  are positive gains to be designed. Then 

the closed-loop system becomes 

11 21 22,V c V c c c c ce k e e k e k e                         (39) 

By selecting proper control gains, (39) can be made 
asymptotically stable with desired convergence rate. When 

the new outputs  ,
T

V ce ecy are driven to zero, the altitude 

tracking error 
he  will also converge to zero under the effect 

of the modified zero dynamics (37).  

From this nonlinear example, the superiority of ORDI is 
shown. It can be seen that the control law obtained by ORDI 
is much more concise than that of DEDI. Compared to DEDI, 
ORDI greatly simplifies the design process and reduce the 
computational burden. Furthermore, the performance of these 
two methods will be compared in the simulation. 

C. Simulation 

In the simulation, the initial values of system states are set 

to the equilibrium  15060,110000,0,0.0312,0
T

. The 

commands are set to let the velocity and altitude climb by 100 
ft and 100 ft/s, respectively. The control parameters of DEDI 
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are set as
11 3ak  ,

12 3ak  ,
13 1ak  ,

21 4ak  ,
22 6ak  , 

23 4ak  , and 
24 1ak  . The control parameters of ORDI are 

set as
11 1ck  ,

21 4ck  , and 
22 4ck  . Three values will be 

chosen for the combination coefficient  to test its impact. 

Fig.5 shows the simulation results of DEDI and Figure 6 
shows the simulation results of ORDI. 

 

Figure 5.  Simulation results of DEDI on hypersonic vehicle 

 

Figure 6.  Simulation results of ORDI on hypersonic vehicle 

For DEDI, as shown in Figure 5, the tracking performance 
is excellent that both outputs achieves the commands quickly 
and smoothly. 

For ORDI, it is found that the altitude exhibits 
high-frequency vibration for small value of   . This may 

because the root of the linearized zero dynamics has an 
imaginary part much greater than its real part when   is small 

as shown in Figure 4. Therefore   should be chosen as big 

numbers. The results are shown in Figure 6. It can be seen that 
the tracking performance of velocity is as good as that of 
DEDI, but the altitude response exhibits damped vibration. As 
  increases, the vibration is weakened but the rising time 

become longer. So even though the altitude tracking 
performance can be adjusted by tuning the combination 
coefficient, the extent is limited by the structure of the 
nonlinear zero dynamics. 

V. CONCLUSION 

In this paper, we show that the output redefinition-based 

dynamic inversion (ORDI) method, which is originally 

proposed for nonminimum phase systems, is also applicable 

to control MIMO systems with no relative degree, thus 

enlarges the application range of ORDI. Compared to the 

traditional dynamic extension-based dynamic inversion 

(DEDI) method, ORDI gives a new option to the control issue 

for MIMO systems with no relative degree and has some 

advantages when applied to complex systems, which are 

shown in the hypersonic flight vehicle example. In a word, 

ORDI is much easier to implement and results in simpler 

control law thus reducing the computational burden. In the 

future, more work will be done to compare the robustness of 

these two methods when there are model uncertainties, and 

the new output will be chosen as a nonlinear combination to 

possibly improve the tracking performance. 
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