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a b s t r a c t

In this paper, the nonminimum phase problem of a flexible hypersonic vehicle is investigated. The main
challenge of nonminimum phase is the prevention of dynamic inversion methods to nonlinear control
design. To solve this problem, we make research on the relationship between nonminimum phase and
backstepping control, finding that a stable nonlinear controller can be obtained by changing the control
loop on the basis of backstepping control. By extending the control loop to cover the internal dynamics in
it, the internal states are directly controlled by the inputs and simultaneously serve as virtual control for
the external states, making it possible to guarantee output tracking as well as internal stability. Then,
based on the extended control loop, a simplified control-oriented model is developed to enable the
applicability of adaptive backstepping method. It simplifies the design process and releases some lim-
itations caused by direct use of the no simplified control-oriented model. Next, under proper assump-
tions, asymptotic stability is proved for constant commands, while bounded stability is proved for
varying commands. The proposed method is compared with approximate backstepping control and
dynamic surface control and is shown to have superior tracking accuracy as well as robustness from the
simulation results. This paper may also provide a beneficial guidance for control design of other complex
systems.

& 2017 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Nonminimum phase problem of aircrafts has been studied in
the past few years [1–6]. Before the emergence of canard config-
ured fighters in the early 1990s, most aircrafts are designed with a
conventional horizontal tail that uses an elevator for pitch control.
A typical character of this kind of aircrafts is the existence of
nonminimum phase zeros in the transfer function from elevator to
flight-path angle [1,2]. As a result, the step response of the ele-
vator angular deflection to pitch angle exhibits initial undershoot,
which is a common property of nonminimum phase systems [3,4].
The nonminimum phase behavior of aircrafts results from the fact
that the generation of an upward pitch moment produces a small
parasitic downward force at the same time [5]. In the case of hy-
personic vehicle, there is not much difference from conventional
aircrafts. As stated in [2], the nonminimum phase behavior of a
hypersonic vehicle stems from elevator-to-lift coupling. When the
elevator is actuated to produce a nose-up moment, the aircraft
experiences a loss of lift from the elevator. So the vehicle will
rights reserved.
instantaneously lose altitude before achieving a positive climb
rate. Adding a canard to the vehicle may suppress the non-
minimum phase behavior, but it will cause a significant thermal
stress problem, making it difficult to carry out in practice [6].

Nonminimum phase is an interesting and existing problem in
output tracking control. For linear system, nonminimum phase
problem may be less concerned, since linear control methods such
as pole assignment and LQR (linear quadratic regulator) are not
restricted by the nonminimum phase character. But when it turns
to nonlinear control, things become quite different. As to nonlinear
system, nonminimum phase system refers to the system with
unstable zero dynamics [7], which are equivalent to unstable
transmission zeros in linear system. The nonminimum phase
character of a plant restricts direct application of the powerful
nonlinear control technique, dynamic inversion [8]. Dynamic in-
version provides a way to construct a controller for exact output
tracking. But for nonminimum phase system, the dynamic inver-
sion method and all of its variants (such as feedback linearization)
become invalid since they make the unstable zero dynamics an
unobservable part in the closed loop system. The reason can be
summarized as that dynamic inversion focuses on exact tracking
of external states, while no control is imposed on the unstable
internal dynamics. Therefore, exact tracking for nonminimum
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phase system by dynamic inversion is at the price of the di-
vergency of internal dynamics.

Another influence brought by nonminimum phase is the per-
formance limitations. It has long been recognized that a funda-
mental limitation exists in the achievable transient tracking per-
formance for a nonminimum phase system. As shown in [9],
perfect tracking of any reference signal is possible in the absence
of unstable zero dynamics, that is, the L2-norm of the tracking
error can be made arbitrarily small. But this is no longer possible
for systems with unstable zero dynamics, because an amount of
“output energy” must be used for stabilizing the internal dynamics.

In conclusion, compared with minimum phase systems, the
main challenges for nonminimum phase systems are: (1) It is
much more difficult to design a stable nonlinear controller since
the direct application of dynamic inversion and all of its variants
fail to be used; (2) Inherent performance limitations exist for
nonminimum phase systems.

For the second challenge, as stated in [2], the presence of
nonminimum phase severely limits the achievable bandwidth of
the hypersonic vehicle control system. However, this is what we
can’t change. What we concern about is the first challenge: how to
design a stable nonlinear controller for nonminimum phase hy-
personic vehicle. To solve this problem, some beneficial work has
been done over the past few years. Two remarkable works among
them are made by Parker [10,11] and Fiorentini [8].

Parker [10,11] proposes a useful method, approximate feedback
linearization, which is derived from [12], to solve the non-
minimum phase problem of hypersonic vehicle. Due to the ele-
vator-to-lift coupling, the elevator angular deflection appears in
lower-order derivative of altitude. By neglecting the weak elevator
coupling and making other simplifications, a control-oriented
model (COM) is obtained. Dynamic inversion can then be applied
to the COM, and it results in approximate linearization of the
original model. Fiorentini [8] adopts another method, output re-
definition, to solve the nonminimum phase problem of hypersonic
vehicle. Output redefinition is proposed by Gopalswamy and He-
drick [13] and is a general method to deal with the nonminimum
phase problem. The main idea of output redefinition is to find a
new output to adjust the zero dynamics such that the zero dy-
namics with respect to the new output are acceptable, and then
design controller based on the new output. By virtue of this idea,
Fiorentini [8] takes coordinate change to obtain the normal form
of zero dynamics and then selects a suitable command for the
pitch angle to stabilize the zero dynamics. Therefore by selecting
the pitch angle tracking error as a new output, the corresponding
zero dynamics are stable. Flight path angle (FPA) is chosen as ac-
tual output and an integral augmentation is taken on the FPA to
guarantee there is no steady-state error. These two papers both
solved the nonminimum phase problem of hypersonic vehicle
successfully. However, their design process may be a little com-
plex. For the approximate feedback linearization method, it re-
quires taking dynamic extension at the input side and calculating
the analytic expressions of the third derivative of velocity and the
fourth derivative of altitude, which is a huge amount of work. And
for output redefinition, we need to take several complicated co-
ordinate changes to remove the control inputs from the zero dy-
namics. Besides, since they both select FPA rather than altitude as
an output, the altitude tracking error will not converge to zero.

In other literatures, researchers try to apply backstepping
control to design controller for the COM [14–18]. However, re-
striction is imposed on direct use of backstepping control since the
complexity of the model will cause the “explosion of terms” pro-
blem [22] in calculating the analytical expressions of the com-
mand derivatives for the virtual control. In [14], approximate
backstepping is adopted where the command derivatives are ne-
glected. In [15,16], dynamic surface is employed where the
command derivatives are estimated by a filter. Similarly, in [17,18],
command filter backstepping is used, and the command deriva-
tives are also estimated by a filter. However, the relationship be-
tween nonminimum phase and backstepping control is not men-
tioned in these literatures.

Motivated by the literatures above, we design a stable non-
linear controller for a nonminimum phase hypersonic vehicle from
a new way by combining model simplification and adaptive
backstepping control. First, we make further simplification on the
COM and develop a simplified control-oriented model (SCOM).
Then adaptive backstepping control is applied to the SCOM. The
proposed method is compared with approximate backstepping
and dynamic surface method developed on the COM and is shown
to have superior tracking accuracy as well as robustness from the
simulation results.

The main contributions of the paper are twofold. First, we find
out the principle to design a stable nonlinear controller through
backstepping for nonminimum phase hypersonic vehicle. The key
is extending the control loop to cover the internal dynamics. Si-
milar to hypersonic vehicle, the nonminimum phase behavior of a
wide variety of systems is caused by some undesired couplings,
which renders the input appears in lower order derivative of the
output and reduces the system's relative degree. For those sys-
tems, the natural control loop which chooses the shortest route
from the output to the input, though achieves exact output
tracking, is unstable since it puts no control on the unstable in-
ternal dynamics and leaves it as an unobservable part in the closed
loop system. On the contrary, in the extended control loop which
covers the internal dynamics, the internal states are directly con-
trolled by the inputs and simultaneously serve as virtual control
for the external states, which allows it to have the possibility of
realizing output tracking as well as guaranteeing internal stability.
Although aimed at hypersonic vehicle, this principle may be also
applicable to other nonminimum phase systems, such as VTOL
(vertical takeoff and landing aircraft) [12], inverted pendulum [19],
flexible manipulator [20], and ship [21]. Second, we present a new
way to design a stable nonlinear controller for the nonminimum
phase hypersonic vehicle by combining model simplification and
adaptive backstepping control. It simplifies the design process and
releases some limitations such as “explosion of terms” problem
existed in using backstepping control to the COM. Therefore this
paper may also provide a beneficial guidance for control design of
other complex systems.

The remainder of the paper is organized as follows: In Section
2, the flexible hypersonic vehicle model is introduced and the
control objective is defined. Section 3 gives problem formulation
and the main results. Section 4 presents the process of control-
oriented modeling. Section 5 introduces approximate back-
stepping and dynamic surface control design while Section 6 in-
troduces adaptive backstepping control design. The simulation
results are shown in Section 7, and conclusions are offered in
Section 8.
2. Flexible hypersonic vehicle model

The full nonlinear model of a flexible hypersonic vehicle is
proposed by Bolender and Doman [25], in which the forces and
moments are not expressed in an analytical form. Afterwards,
Fiorentini [26] replaces the expressions of forces and moments by
curve-fit approximations and obtains a curve-fitted model (CFM).
The CFM is of high fidelity to the full nonlinear model and is easy
to understand. We will use the CFM as control plant in the si-
mulation. The CFM is described as
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Fig. 1. Root map of the linearized zero dynamics.

L. Ye et al. / ISA Transactions 70 (2017) 161–172 163
( )

( ) ( )

α γ

γ

γ α γ

θ

η ζ ω η ω η

̇ = − −
̇ =

̇ = + −
̇ =
̇ =

¨ = − ̇ − + = ( )

V T D mg m

h V

L T mg mV

Q

Q M I

N i

cos sin /

sin

sin cos /

/

2 , 1, 2, 3. 1

yy

i i i i i i i
2

The model comprises of five rigid body states ⎡⎣ ⎤⎦γ θV h Q, , , ,
T
,

representing velocity, altitude, flight path angle, pitch angle, and

pitch rate, respectively, and six flexible modes ⎡⎣ ⎤⎦η η η η η η̇ ̇ ̇, , , , ,
T

1 1 2 2 3 3 ,
which reflect the first three bending modes of the fuselage.
α θ γ= − is the angle of attack. m is the vehicle mass. ζ ω,i i are
damping ratio and natural frequency of the flexible modes. g is the
acceleration of gravity. Iyy is the moment of inertia.

There are two control inputs ⎡⎣ ⎤⎦ϕ δ=u , e
T
, representing fuel air

ratio and elevator angular deflection, respectively. Note that the
control inputs don’t display explicitly in (1) but affect it through
the thrust T , lift L, drag D, pitching moment M and generalized
forces Ni. The detailed formulations of the forces and moments
and all the parameter values can be found in [27,28].

The outputs to be controlled are selected as ⎡⎣ ⎤⎦=y V h,
T
. Based

on the flexible hypersonic vehicle model, the control objective is
defined as follows:

Control Objective. For given smooth and bounded commands
V h,r r , to design control law for the control inputs ⎡⎣ ⎤⎦ϕ δ=u , e

T
such

that all states remain bounded and the tracking errors ˜ = −V V Vr ,
˜ = −h h hr converge to zero when the commands turn to constants.

Remark 1. It is worth noting that the hypersonic vehicle in the
presence of stochastic elevator faults and stochastic noise can be
modeled as a Markov jump system [29]. Then, the corresponding
theory, such as [29–31], may provide an effective way to this issue,
which will be investigated in our future work.
Natural Control 
loop:

Extended Control 
Loop:

External States

Internal States

Input Output

Fig. 2. System structure of hypersonic vehicle.
3. Problem formulation and the main results

As a preliminary for control design, we will analyze the stability
of the zero dynamics and explain how to design a stable nonlinear
controller through backstepping.

In system (1), γV h, , are external states and θ ηQ, , are internal
states. According to the definition of zero dynamics [7], the zero
dynamics about the tracking errors ˜ ˜V h, are the dynamics of the
internal states when ˜ = ˜ =V h0, 0, i.e., = =V V h h,r r . Hence the first
three equations of (1) can be written as
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For convenience, terms about δe in D have been neglected here
so that ϕ becomes the only input in velocity loop, thus decoupling
is not needed. By solving (2) we can get
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By substituting (3) into the rest equations of (1), we can get the
zero dynamics, which might as well be denoted as
( )
( )
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This is the zero dynamics corresponding to the outputs ˜ ˜V h, ,
which represents the remaining dynamics when the outputs are
regulated to zero. We can see from (4) that the zero dynamics is
an 8th order nonlinear dynamic equation, whose stability de-
pends on the commands V h,r r and the initial values of the states.
Since it's difficult to analyze its global stability with respect to
arbitrary commands, we will instead focus on its local stability
near the equilibrium point with respect to constant commands
as done in [8].

Consider the admissible flight range of this model [28], which
is ⎡⎣ ⎤⎦∈V ft s7500, 11000 / , ⎡⎣ ⎤⎦∈h ft70000, 135000 . Each time we
select a pair of constant commands V h,r r from this range, and then
we calculate the equilibrium point and linearize the zero dy-
namics. When the whole range is covered, we obtain the root map
of the linearized zero dynamics as Fig. 1.

From Fig. 1 we can see that the linearized zero dynamics has six
complex eigenvalues which stay in the left half plane and two real
eigenvalues which are one positive and one negative. So the zero
dynamics are unstable due to the existence of the positive real
eigenvalue, indicating that system (1) is nonminimum phase with
respect to the tracking errors ˜ ˜V h, . Next we will analyze the impact
of the unstable zero dynamics and give the main results.

For convenience, we will not consider the flexible modes in the
analysis since they count little to the nonminimum phase problem.
Consider model (1), despite the flexible modes, the structure of the
altitude loop is shown in Fig. 2.

Due to elevator-to-lift coupling, the control input δe appears in
lower-order derivative of the output h. As a result, there are two
routes from the output to the intput: the shorter route across the
external states and the longer route across both the external and
internal states. In fact this structure is very common in other
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nonminimum phase system, such as VTOL [12], inverted pendu-
lum [19], and ship [21]. In the philosophy of backstepping, a state
is used as virtual control to control the state it affects. For this
kind of systems, backstepping can be conducted from the two
intput-output routes. We will call the shorter route as the natural
control loop and the longer one as the extended control loop as
shown in Fig. 2.

If we use dynamic inversion, it means to obtain the control law
δe by taking inversion of the γ h, subsystem. From the perspective
of backstepping, it uses the natural control loop: δ γ→ → he . As a
result, when the goal of exact tracking is achieved, i.e.,
˜ = ˜ =V h0, 0, the internal dynamics θ Q, become equivalent to the
zero dynamics (4) and cannot remain bounded as analyzed in the
previous. Therefore, to guarantee stability of the internal states, we
need to use the extended control loop. That is δ θ γ→ → → →Q he ,
with γ θ Q, , being the virtual control in the system. It can be seen
that in the extended control loop, the internal states are directly
controlled by the inputs and simultaneously serve as virtual con-
trol for the external states. This change is crucial and enables it to
have the possibility of realizing output tracking as well as stabi-
lizing the internal dynamics. The desired value of the virtual
control γ θ Q, ,r r r will be designed one by one to realize tracking of h
and finally lead to the actual control law δe. Based on this thought,
we will treat δe in γ h, subsystem as a perturbation and establish
the control-oriented model in the next section.
4. Control-oriented modeling

Due to the complexity of the hypersonic vehicle model, there
are several obstacles prevent us from nonlinear control design
such as unknown flexible states, input-output couplings and
nonminimum phase character. In this section we will follow the
idea of control-oriented modeling [11] to simplify the original
model (1) to render it more suitable for control design. The dif-
ferences between our method and Ref. [11] are: (1) Other than
neglecting the unavailable items in CFM, we treat them as un-
certainties; (2) Ref. [11] is oriented to feedback linearization while
our method is oriented to adaptive backstepping method; (3) In
order to use adaptive backstepping control, further simplification
on FPA dynamics is made so that the altitude loop becomes an
integral chain with matched and mismatched uncertainties. While
Ref. [11] takes dynamic extension at the inputs, which is not
needed in our method.

As shown in Fig. 3, the process of control-oriented modeling is
divided into two steps. In the first step, we will treat the un-
available items in CFM as uncertainties to make it available for
control design. The obtained model after the first simplification is
COM, which is in approximate strict-feedback form. In the second
step, further simplification will be made on the FPA dynamics to
enable the application of adaptive backstepping control. The ob-
tained model after the second simplification is SCOM, which is in
an integral chain form.

In the first step of control-oriented modeling, there are mainly
three aspects considered here: (1) Flexible modes: they are not
Fig. 3. Process of control
measurable so that they cannot be used in the controller; (2) In-
put-output couplings: δe in velocity loop and ϕ in altitude loop are
undesired couplings, they should be viewed as uncertainties so we
can decouple the system; (3) Nonminimum phase: δe in γ ̇ causes
nonminimum phase problem, it should be treated as uncertainty
to raise the relative degree of the system.

According to the above analysis, we separate the available and
unavailable items in the CFM. By denoting the unavailable items as
uncertainties, we can rewrite system (1) as follows
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In (5), the first equation corresponds to the output V and the
input ϕ, which forms the velocity loop. The other four equations
correspond to the output h and the input δe, which forms the al-
titude loop.

As mentioned before, to deal with the nonminimum phase
problem, we should take θ as a virtual control of γ . Therefore we
rewrite γf 0 in an affine form with respect to θ

θ= + ( )γ γ γf f g 70

where

( ) ( )
( )

γ α γ= ¯ − ¯ + ¯ −

= ¯ ( )

γ
α

γ
α

f qSC qSC qSC mg mV

g qSC mV

sin cos /

/ 8

L L T

L

0

What's more, since γ is very small through the flight envelope
[26], we will use the following approximation

γ γ̇ = ≈ ( )h V Vsin 9

Then the altitude loop is in an approximate strict-feedback
form:
-oriented modeling.
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The above equation along with the velocity loop in (5) forms
the COM.

Remark 2. The definition of strict-feedback system can be found
in [32]. It should be noted that (10) is not a real strict-feedback
system because γ θ, appear in γf . So we call it approximate strict-
feedback form.

Unlike model parameter uncertainties or external disturbances,
the uncertainties caused by model simplifying are specific. The
uncertainties actually consist of system states and inputs. For the
need of control design and stability analysis, it is usually assumed
that the uncertainties (including system states) or its derivatives
are bounded [14,23] or constants in steady state [24]. In a similar
way, we make the following assumption:

Assumption 1. For constant commands, γd d d, ,V q can be seen as
constant uncertainties. And for varying commands, γd d d, ,V q can
be seen as uncertainties with limited change rate, i.e., ̇ ̇ ̇

γd d d, ,V q are
bounded.

Remark 3. The assumption allows us to use adaptive methods to
compensate the uncertainties. Since the uncertainties are expres-
sions of system states, they will turn to constants when system
achieves steady state. It is helpful to make steady-state analysis
and get some valuable conclusions. However, the actual result
should be validated by simulation. If the simulation results can
support the analysis conclusions, then it proves the assumption is
reasonable.

Since the COM is in a form of approximate strict-feedback, di-
rect use of backstepping will cause the so-called “explosion of
terms” problem [22]. This problem can be solved by approximate
backstepping [14], dynamic surface [15,16,22] or command filter
backstepping [17,18]. In this paper, we consider a new way to solve
this problem by means of model simplification. Considering
backstepping is applicable to strict-feedback system, and espe-
cially suitable for integral chain system, further simplification will
be made to allow the use of backstepping. Recall the transforma-
tion from CFM to COM, we treat some intractable items as un-
certainties to make it suitable for control design. Next we will
make the second simplification to obtain the SCOM.

For the altitude loop (10), the main obstacle lies in the FPA
dynamics. Along with the desired value γr , the FPA dynamics can
be rewritten as

γ θ γ˜ ̇ = + + − ̇ ( )γ γ γf g d 11r

Here θ is the virtual control, with the coefficient γg being
identically positive, indicating that the control direction is al-
ways positive. Therefore it is natural to think about scaling the
coefficient γg to one and all the other items as uncertainties.
Then (11) turns into

γ θ˜ ̇ = + ( )γd 121

where

θ γ= + − − ̇ ( )γ γ γd f d 13r1 0

is the lumped uncertainty. This idea is also adopted in [16]. With
this secondary simplification, the last three equations of the
altitude loop become

γ θ

θ

δ

˜ ̇ = +
̇ =
̇ = + + ( )

γd

Q

Q f g d 14q q e q

1

It is an integral chain with matched and mismatched un-
certainties, which is ready for the application of adaptive back-
stepping control. Eq. (14) along with the velocity loop in (5) and
the first equation of the altitude loop in (10) constitute the SCOM.

In the same way as Assumption 1, the following assumption is
made for preparation of control design and stability analysis:

Assumption 2. For constant commands, γd 1 can be seen as con-
stant uncertainty. And for varying commands, γd 1 can be seen as
uncertainty with limited change rate, i.e., γ̇d 1 is bounded.

From the control-oriented modeling process, we can summar-
ize that the model simpliflication has the following advantages:

(1) Convenience. A direct benefit of model simplification is to make
the model concise and more convenient for controller design.
The simplifications we made serve for the controller design and
cooperate with the control method to work. By treating the
intractable items in the original model as uncertainties and
compensate it through adaptive laws, we avoid the difficulties
caused by unknown flexible states, input-output couplings and
nonminimum phase problems and deal with them in an in-
direct way. As a result, we have achieved dynamic decoupling
and dynamic compensation for flexible states as well as the
stabilization of the unstable zero dynamics.

(2) Effectiveness. The simplified model is a nonlinear model with
uncertainties, which retains some dominant feature of the
original model and is closer to the original model than the
model obtained by Jacobian linearization. On one hand, it al-
lows us to take advantage of the powerful nonlinear control
tools, e.g. the SCOM in this paper is suitable for adaptive
backstepping control method. On the other hand, since the
simplified model retains the dominant feature of the original
model, the performance can be guaranteed when the con-
troller is applied to the original model.
5. Approximate backstepping and dynamic surface control
design based on COM

In this section, approximate backstepping and dynamic surface
control design based on COM will be derived to serve as compare
groups for adaptive backstepping control. As a preliminary, two
lemmas will be introduced.

Lemma 1. (LaSalle's Theorem [33]): Let Ω ⊂ D be a compact set
that is positively invariant with respect to system ̇ = ( )x f x . Let

→V D R: be a continuously differentiable function such that
̇ ( ) ≤V x 0 in Ω. Let E be the set of all points in Ω where ( ) =V x 0. Let

M be the largest invariant set in E . Then every solution starting in
Ω approaches M as → ∞t .

Lemma 2. (Input-to-State Stability [33]): For the linear time-in-
variant system.

̇ = +x Ax Bu

with a Hurwitz matrix A. Then the system is input-to-state stable
and there exists positive constants λ k, such that
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( ) ( )
λ

τ‖ ‖ ≤ ‖ ‖ + ‖ ‖ ‖ ( )‖λ

τ

−

≤ ≤
x t ke x

k B
u0 supt

t0

In the following controller design process, we will first study
the case of constant uncertainties and design adaptive law with
the help of Lyapunov function (Lemma 1). Then bounded stability
will be proved for varying uncertainties by using Lemma 2.
5.1. Control design for velocity loop

Consider the tracking error dynamic of velocity loop:

ϕ˜ ̇ = + + − ̇ ( )V f g d V 15V V V r

It's a first-order system with matched uncertainty. Since dV is

unknown, we will use an estimated value d̂V to replace it in the
controller. The control input is designed as

( )ϕ = − ˜ − − ^ + ̇
( )k V f d V g/ 16V V V r V

where kV is a positive constant. Denote the estimation error
˜ = − ^d d dV V V . Then the closed loop becomes

˜ ̇ = − ˜ + ˜ ( )V k V d 17V V

To ensure the stability of the velocity loop, we use Lyapunov

theory to design the update law of d̂V . Define the candidate Lya-
punov function

= ˜ + ˜
( )

W V
b

d
1
2

1
2 18V

V1
2 2

where bV is a positive constant. We will start from the constant
commands so that dV is a constant according to Assumption 1,
then we have

˜ ̇ = ̇ − ^̇
= − ^̇

( )d d d d 19V V V V

So the derivative of W1 is

( )

( )

̇ = ˜ ˜ ̇ + ˜ ˜ ̇

= ˜ − ˜ + ˜ − ˜ ^̇

= − ˜ − ˜ + ˜ − ˜ ^̇

( )

W VV
b

d d

V k V d
b

d d

V k V d
b

d d

1

1

1

20

V
V V

V V
V

V V

V V
V

V V

1

By choosing the update law of d̂V as

^̇
= ˜ ( )d b V 21V V

It follows that ̇ = − ˜ ≤W k V 0V1
2

. Since Ẇ1 is negative semi-
definite rather than negative definite, we need to use LaSalle's
Theorem to analyze the stability. Solving ̇ =W 01 yields ˜ =V 0. If
˜ ≡V 0, then ˜ ̇ =V 0. According to (17), we can obtain ˜ =d 0V . So the

largest invariant set is { }( )˜ ˜ ˜ = ˜ =V d V d, 0, 0V V . So according to

Lemma 1, we have ˜ = ˜ =
→∞ →∞

V dlim 0, lim 0
t t

V , i.e., the closed loop of

velocity is asymptotic stable.
When tracking varying commands, bounded stability rather

than asymptotic stability can be proved by Lemma 2. According to
(17) and (21), the closed loop of the velocity loop can be written as

̇ = + ( )e A e B u 221 1 1 1 1

where
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥=

˜
˜ = ̇ =

−
−

=
( )

e
V

d
u

d
A

k

b
B,

0
,

1

0
, 1 0

0 1 23V V

V

V
1 1 1 1

It is not difficult to verify that A1 is Hurwitz. So according to
Lemma 2, we have

( ) ( ) ( )‖ ˜ ‖ ≤ ‖ ‖ ≤ ‖ ‖ + ( )V t e t a e b0 241 1 1 1

with

λ
τ= =

‖ ‖
‖ ( )‖

( )
λ

τ

−

≤ ≤
a k e b

k B
u, sup

25
t

t
1 1 1

1 1

1 0
1

1

where λ k,1 1 are positive constants. According to Assumption 1, ̇dV

is bounded, then ‖ ‖u1 is bounded. Thus ‖ ˜‖V is bounded according
to (24).

Remark 4. We adopt a strategic way to proceed with the sta-
bility proof. Based on the assumptions about the uncertainties,
the stability proof goes step by step from the simple case of
constant uncertainties to the more complex case of varying
uncertainties. For constant uncertainties, we can get a nominal
closed loop system which can be proved asymptotic stable by
LaSalle's Theorem. And then we can turn to the more general-
ized case of varying uncertainties, where the resulted closed
loop system can be seen as a perturbed system of the nominal
closed loop system. Therefore it's easy to prove the bounded
stability by Input-to-State Stability Theorem without knowing
the bounds of the uncertainties. This strategy will be adopted
repeatedly in the later design.
5.2. Control design for altitude loop

As mentioned before, the control loop of altitude loop is
δ θ γ→ → → →Q he . Here γ θ Q, , are treated as virtual control,
with γ θ Q, ,r r r being their desired values to be designed. Define the
corresponding tracking errors as

γ γ γ θ θ θ˜ = − ˜ = − ˜ = − ( )Q Q Q, , 26r r r

Then the dynamics of altitude loop (10) can be rewritten as

γ γ

γ θ θ γ

θ θ

δ

˜ ̇ = ˜ + − ̇

˜ ̇ = + ˜ + + − ̇

˜ ̇ = ˜ + − ̇

˜ ̇ = + + − ̇
( )

γ γ γ γ

h V V h

f g g d

Q Q

Q f g d Q 27

r r

r r

r r

q q e q r

Thus the altitude loop is decomposed into four subsystems,
with γ θ Q, ,r r r being the virtual control inputs of the first three
equations respectively and δe being the control input of the last
equation. So the control task becomes to design the virtual control
laws γ θ Q, ,r r r and the real control input δe to stabilize the error

dynamics of the altitude loop. It is worth noting that γ θ̇ ̇ Q̇, ,r r r

appear in (27). Since γ θ Q, ,r r r are feedbacks of system states, their
derivatives are difficult to get. Approximate backstepping and
dynamic surface method will be used to solve this problem.

5.2.1. Method 1: approximate backstepping
By using approximate backstepping method, we will not

contain the command derivatives γ θ̇ ̇ Q̇, ,r r r in the control laws of
θ δQ, ,r r e. The virtual control laws and real control input are de-
signed as



L. Ye et al. / ISA Transactions 70 (2017) 161–172 167
( )

( )

( )γ

θ γ

θ γ

δ θ

= − ˜ + ̇

= − ˜ − − ^

= − ˜ − ˜

= − ˜ − ˜ − − ^
( )

γ γ γ γ

θ γ

k h h V

k f d g

Q k g

k Q f d g

/

/

/
28

r h r

r

r

e q q q q

where > > > >γ θk k k k0, 0, 0, 0h q . Substituting (28) into (27),
the resulted closed loop system is

γ

γ γ θ γ

θ θ γ θ

θ

˜ ̇ = − ˜ + ˜

˜ ̇ = − ˜ + ˜ + ˜ − ̇

˜ ̇ = − ˜ − ˜ + ˜ − ̇

˜ ̇ = − ˜ − ˜ + ˜ − ̇ ( )

γ γ γ

θ γ

h k h V

k g d

k g Q

Q k Q d Q 29

h

r

r

q q r

We can see that γ θ̇ ̇ Q̇, ,r r r are still remained in the closed loop

system since we don’t eliminate γ θ̇ ̇ Q̇, ,r r r in the control laws.
The adaptive laws are designed as

γ^̇
= ˜

^ ̇
= ˜ ( )

γ γd b

d b Q 30q q

with > >γb b0, 0q . Denote the estimation errors ˜ = − ^
γ γ γd d d ,

˜ = − ^d d dq q q , then we have

γ˜ ̇ = ̇ − ˜

˜ ̇ = ̇ − ˜ ( )

γ γ γd d b

d d b Q 31q q q

Next we will analyze the stability of the whole closed loop
system (29) and (31). The analysis will be conducted for constant
commands and varying commands respectively.

As a preliminary of stability analysis and motivated by [14], the
following assumption is made:

Assumption 3. For constant commands, γ θ̇ ̇ Q̇, ,r r r are regarded as

zero. And for varying commands, γ θ̇ ̇ Q̇, ,r r r are bounded.

First, consider the case when tracking constant commands.
Under Assumption 1 and Assumption 3, it can be known that

γ θ̇ = ̇ = ̇ = ̇ = ̇ =γQ d d0, 0, 0, 0, 0r r r q . Denote ⎡⎣ ⎤⎦γ θ= ˜ ˜ ˜ ˜ ˜
γe Q d d, , , , q

T

2 ,

then the closed loop system (29) and (31) can be written as fol-
lows:

γ˜ ̇ = − ˜ + ˜ ( )h k h V 32h

̇ = ( )e A e 332 2 2

where

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

−

− −

− −

−

− ( )

γ γ

γ θ

γ

A

k g

g k

k

b

b

0 1 0

1 0 0

0 1 0 1

0 0 0 0

0 0 0 0 34

q

q

2

Select the candidate Lyapunov function as

γ θ= ˜ + ˜ + ˜ + ˜ + ˜
( )γ

γW Q
b

d
b

d
1
2

1
2

1
2

1
2

1
2 35q

q2
2 2 2 2 2

Differentiating both sides of (35) along (33) yields
γ θ̇ = − ˜ − ˜ − ˜ ≤ ( )γ θW k k k Q 0 36q2
2 2 2

Since Ẇ2 is negative semidefinite rather than negative definite,
we need to use LaSalle's Theorem to analyze the stability. Solving

̇ =W 02 yields γ θ˜ = ˜ = ˜ =Q0, 0, 0. If γ θ˜ ≡ ˜ ≡ ˜ ≡Q0, 0, 0, then

γ θ˜ ̇ = ˜ ̇ = ˜ ̇ =Q0, 0, 0. According to (33), we can obtain ˜ = ˜ =γd d0, 0q .

So the largest invariant set is { }=e e 02 2 . According to Lemma 1, we

have =
→∞

elim 0
t

2 . Combine (32), we have ˜ =
→∞

hlim 0
t

. Therefore, the

closed loop system of altitude loop is asymptotic stable when
tracking constant commands.

Next, consider the case when tracking varying commands. In
this case the closed loop system can be seen as a perturbed system
of (32), (33), that is

γ˜ ̇ = − ˜ + ˜

̇ = + ( )

h k h V

e A e B u 37

h

2 2 2 2
1

2
1

where ⎡⎣ ⎤⎦γ θ= − ̇ − ̇ − ̇ ̇ ̇
γu Q d d, , , ,r r r q

T

2
1 and ∈ ×B R2

1 5 5 is an identity

matrix. Since (33) is asymptotic stable, it can be known that A2 is
Hurwitz according to Lyapunov's First Theorem. Since −kh and A2

are both Hurwitz, it is input-to-state stable from u2
1 to e2 and from

γ̃V to h̃. According to Assumption 1 and Assumption 3, u2
1 is

bounded, which indicates that e2 is bounded according to Lemma
2. So γ̃ is bounded, and thus h̃ is bounded, too. Therefore, the
closed loop system of altitude loop is bounded stable when
tracking varying commands.

5.2.2. Method 2: dynamic surface
By using dynamic surface, a first-order filter will be used to

estimate the derivatives γ θ̇ ̇ Q̇, ,r r r as follows:

( )
( )

γ λ γ γ

θ λ θ θ

λ

̇ = ( − )
̇ = −
̇ = − ( )

γ

θ

Q Q Q 38

r c r

r c r

r q c r

Here λ λ λγ θ, , q are positive filter parameters, and γ θ Q, ,c c c are the
virtual control laws, with γ θ Q, ,r r r being their estimations. Pay
attention that the meanings of the symbols γ θ Q, ,r r r are different
from the previous section. Define the virtual control estimation
errors as

γ γ θ θ= − = − = − ( )γ θe e e Q Q, , 39r c r c q r c

and γ θ˜ ˜ Q̃, , are still defined as (26). Then the dynamics of altitude
loop (10) can be rewritten as

γ γ

γ θ θ γ

θ θ

δ

˜ ̇ = ˜ + + − ̇

˜ ̇ = + ˜ + + + − ̇

˜ ̇ = ˜ + + − ̇

˜ ̇ = + + − ̇
( )

γ

γ γ γ θ γ γ

h V Ve V h

f g g e g d

Q e Q

Q f g d Q 40

c r

c r

q c r

q q e q r

Since γ θ̇ ̇ Q̇, ,r r r can be obtained now, they can be eliminated.
Different from (28), the virtual control laws and real control input
are now designed as

( )

( )

( )γ

θ γ γ

θ γ θ

δ θ

= − ˜ + ̇

= − ˜ − − ^ + ̇

= − ˜ − ˜ + ̇

= − ˜ − ˜ − − ^ + ̇
( )

γ γ γ γ

θ γ

k h h V

k f d g

Q k g

k Q f d Q g

/

/

/
41

c h r

c r

c r

e q q q r q

Substituting (41) into (40), the resulted closed loop system is
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γ

γ γ θ

θ θ γ

θ

˜ ̇ = − ˜ + ˜ +

˜ ̇ = − ˜ + ˜ + ˜ +

˜ ̇ = − ˜ − ˜ + ˜ +

˜ ̇ = − ˜ − ˜ + ˜ ( )

γ

γ γ γ γ θ

θ γ

h k h V Ve

k g d g e

k g Q e

Q k Q d 42

h

q

q q

The adaptive law is designed as same as (30).
Next we will analyze the stability of the closed loop system. The

analysis will be conducted for constant commands and varying
commands respectively.

Like Assumption 3 and motivated by [16], the following as-
sumption is made:

Assumption 4. For constant commands, γ θ̇ ̇ Q̇, ,c c c are regarded as
zero. And for varying commands, γ θ̇ ̇ Q̇, ,c c c are bounded.

According to (38), (39), the virtual control estimation error
dynamics can be written as

λ γ

λ θ

λ

̇ = − − ̇

̇ = − − ̇

̇ = − − ̇ ( )

γ γ γ

θ θ θ

e e

e e

e e Q 43

c

c

q q q c

It is obvious that each equation of (43) is input-to-state sable.
When tracking constant commands. Under Assumption 4,

γ θ̇ = ̇ = ̇ =Q0, 0, 0c c c , thus we have = = =γ θ
→∞ →∞ →∞

e e elim 0, lim 0, lim 0
t t t

q

from (43). So when tracking constant commands, the closed loop
system (42) equals to the nominal system (32), (33) and the
asymptotic stable conclusion holds.

When tracking varying commands. With ⎡⎣ ⎤⎦γ θ= ˜ ˜ ˜ ˜ ˜
γe Q d d, , , , q

T

2 ,

the closed loop system (42) and (31) can be written as follows:

γ˜ ̇ = − ˜ + ˜ +

̇ = + ( )

γh k h V Ve

e A e B u 44

h

2 2 2 2
2

2
2

where A2 is the same as (34) and ⎡⎣ ⎤⎦= ̇ ̇
γ θ γu g e e d d, , 0, ,q q

T

2
2 ,

∈ ×B R2
2 5 5 is an identity matrix. Since −kh and A2 are both Hurwitz,

it is input-to-state stable from u2
2 to e2 and from γ̃ + γV Ve to h̃.

According to Assumption 4, γ θ̇ ̇ Q̇, ,c c c are bounded, which indicates

that γ θe e e, , q are bounded from (43). Thus u2
2 is bounded, which

indicates that e2 is bounded from (44). So γ̃ is bounded, and
γ̃ + γV Ve is bounded which indicates that h̃ is bounded from (44).

Therefore the bounded stable conclusion holds.
6. Adaptive backstepping control design based on SCOM

Adaptive backstepping [32,34,35] is a powerful tool in deal-
ing with nonlinear high-order systems with matched and mis-
matched uncertainties. As described in Section 4, the altitude
loop is simply an integral chain with matched and mismatched
uncertainties in the SCOM. Thus adaptive backstepping can be
conveniently used.

The schematic diagram of the control architecture is shown in
Fig. 4. The velocity loop is designed as same as Section 5.1 and the
virtual control γr is designed the same as (28). Next we will con-
centrates on designing controller for the integral chain parts (14)
by using adaptive backstepping method.

In the process of adaptive backstepping control, we need to
design a virtual control law and an adaptive law in each step. The
design follows a recursive procedure as shown in Fig. 5, where the
derivative of the current virtual control which includes the current
adaptive law will be used in calculating the next virtual control,
and the current virtual control will be used in designing the next
adaptive law.

First, consider the flight path angle tracking error dynamics

γ θ θ˜ ̇ = ˜ + + ( )γd 45r 1

Design the virtual control θr as

θ γ= − ˜ − ^
( )γ γk d 46r 1

with >γk 0. Substituting (46) into (45) yields

γ γ θ˜ ̇ = − ˜ + ˜ + ˜ ( )γ γk d 471

where ˜ = − ^
γ γ γd d d1 1 1. Design the update law of ^

γd 1 as

γ^̇
= ˜ ( )γ γd b 481

with >γb 0. So the derivative of θr can be calculated as

( )
θ γ

θ γ

̇ = − ˜ ̇ − ^̇

= − + − ˜ ( )

γ γ

γ γ γ

k d

k d b 49

r 1

1

Next consider the pitch angle tracking error dynamics

θ θ θ

θ γ

˜ ̇ = ̇ − ̇

= ˜ + + + ˜ + ( )γ γ θQ Q k b d 50

r

r 1

where

= ( )θ γ γd k d 511 1

is viewed as the lumped uncertainty in θ̃ ̇ for convenience. Design
the virtual control Q r as

θ θ γ γ= − ˜ − − ˜ − ^ − ˜ ( )θ γ γ θQ k k b d 52r 1

with >θk 0. Substituting (52) into (50) yields

θ θ γ˜ ̇ = − ˜ + ˜ + ˜ − ˜ ( )θ θk Q d 531

where ˜ = − ^
θ θ θd d d1 1 1. Design the update law of ^

θd 1 as
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θ^̇
= ˜ ( )θ θd b 541

with >θb 0. So the derivative of Q r can be calculated as

( )
( ) ( )( )

θ θ γ γ

θ θ γ

θ γ θ θ

̇ = − ˜ ̇ − ̇ − ˜ ̇ − ^̇
− ˜ ̇

= − ˜ ̇ − ̇ − + ˜ ̇ − ^̇

= − + + ˜ + − − + + − ˜ ( )

θ γ γ θ

θ γ γ θ

θ γ γ θ γ γ γ θ

Q k k b d

k k b d

k Q k b d k Q b d b

1

1 55

r 1

1

1 1

Finally, consider the pitch rate tracking error dynamics

( ) ( )δ θ γ θ θ

˜ ̇ = ̇ − ̇

= + + + + ˜ + + + + ˜ + ( )θ γ γ γ γ θ

Q Q Q

f g k Q k b k Q b b d1 56

r

q q e q1

where

( )= + + + ( )θ θ γ γd d k d b d1 57q q1 1 1

is viewed as the lumped uncertainty in ˜ ̇Q for convenience.
Now the actual control intput δe appears in ˜ ̇Q . The final control

law is designed as

⎡⎣
⎤
⎦⎥

( ) ( )δ θ γ θ

θ θ

= − ˜ − − + + ˜ − − +

− ˜ − ^ − ˜
( )

θ γ γ γ γ

θ

−g k Q f k Q k b k Q b

b d

1

58

e q q q

q

1

1

with >k 0q . Substituting (58) into (56) yields

θ˜ ̇ = − ˜ + ˜ − ˜ ( )Q k Q d 59q q1

where ˜ = − ^d d dq q q1 1 1. Design the update law of d̂q1 as

^̇
= ˜ ( )d b Q 60q q1

with >b 0q . Denote ⎡⎣ ⎤⎦γ θ= ˜ ˜ ˜ ˜ ˜ ˜
γ θe Q d d d, , , , , q

T
3 1 1 1 , ⎡⎣ ⎤⎦= ̇ ̇ ̇

γ θu d d d0, 0, 0, , , q
T

3 1 1 1 ,
then the closed loop system of altitude loop can be written as follows
according to (47), (48), (53), (54), (59), (60).

̇ = + ( )e A e B u 613 3 3 3 3

where

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

=

−

− −
− −

−

−
− ( )

γ

θ

γ

θ

A

k

k

k

b

b

b

1 0 1 0 0

1 1 0 1 0

0 1 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 62

q

q

3

and ∈ ×B R3
6 6 is an identity matrix.

Since =u 03 when tracking constant commands, we denote the
nominal closed loop system as

̇ = ( )e A e 633 3 3

Select the candidate Lyapunov function as

γ θ= ˜ + ˜ + ˜ + ˜ + ˜ + ˜
( )γ

γ
θ

θW Q
b

d
b

d
b

d
1
2

1
2

1
2

1
2

1
2

1
2 64q

q3
2 2 2

1
2

1
2

1
2

Differentiating both sides of (66) along (64) yields

γ θ̇ = − ˜ − ˜ − ˜ ≤ ( )γ θW k k k Q 0 65q3
2 2 2

Since Ẇ3 is negative semidefinite, LaSalle's Theoremwill be used
to analyze the stability. Solving ̇ =W 03 yields γ θ˜ = ˜ = ˜ =Q0, 0, 0. If

γ θ˜ ≡ ˜ ≡ ˜ ≡Q0, 0, 0, then γ θ˜ ̇ = ˜ ̇ = ˜ ̇ =Q0, 0, 0. According to (63), we
can obtain ˜ = ˜ = ˜ =γ θd d d0, 0, 0q1 1 1 . So the largest invariant set is
{ }=e e 03 3 . According to Lemma 1, we have =
→∞

elim 0
t

3 . Combine (32),

we have ˜ =
→∞

hlim 0
t

. Therefore, the nominal closed loop system of

altitude loop is asymptotic stable. According to Lyapunov's First
Theorem, it can be known that A3 is Hurwitz. So system (61) is
input-to-state stable from u3 to e3.

When tracking varying commands, ̇ ̇
γd d, q1 are bounded ac-

cording to Assumption 1 and Assumption 2, then ̇ ̇
θd d, q1 1 are also

bounded from (51) and (57). So u3 is bounded which indicates that
e3 is bounded from (61), thus γ̃ is bounded. And (32) is input-to-
state stable as well, so h̃ is bounded.
7. Simulations

To illustrate the effectiveness of the proposed methods, we
have done some simulations in MATLAB/Simulink environment.
The simulations focus on adaptive backstepping method, while
approximate backstepping and dynamic surface will be used as
comparisons.

7.1. Maneuver simulation

First, we will design the commands V h,r r . To maintain sa-
tisfactory performance of the scramjet engine, the dynamic pres-
sure is expected to keep constant [28], i.e., ¯ ̇ =q 0. Because

ρ¯ =q V /22 , we have

( ) ( )ρ ρ ρ ρ¯ ̇ = ̇ + ̇ = ̇ + ̇ = ( )q V VV V V V2 /2 2 /2 0 66
2

That is

ρ ρ̇ + ̇ = ( )V V2 0 67

And because ⎡⎣ ⎤⎦( )ρ ρ= − −h h hexp / s0 0 , it follows that

ρ ρ̇ = − ̇ ( )h h/ 68s

Substituting (68) into (67) yields

̇ = ̇ ( )h h V V2 / 69s

So if Vr is given, then hr is determined by

̇ = ̇ ( )h h V V2 / 70r s r r

The commands are designed as: In the first 50 s, the vehicle
flights with constant commands = =V ft s h ft8000 / , 80000r r . Then
the velocity rises to 10,000 ft/s, the trajectory of Vr is obtained by
filtering the step signal with a third order low pass filter

( )+s1/ 8 1
3
. And the corresponding trajectory of hr is obtained

according to (70). The simulation time is 200 s and the simulation
step is 0.01 s. The simulation results of adaptive backstepping are
shown in Figs. 6–11 and a comparison between approximate
backstepping, dynamic surface, and adaptive backstepping is
shown in Fig. 12.

Fig. 6 shows the curves of velocity and altitude and their tracking
errors. From the top part we can see that the real trajectories of V h,
coincide with the reference trajectories V h,r r . The bottom part shows
the tracking errors. In the time interval 0–50 s and 120–200 s, the
commands V h,r r are constants, and we can see that the tracking errors
converge to zero. Moreover, in the time interval 50–120 s, the com-
mands V h,r r are varying and the tracking errors remain small.
Therefore the control objective proposed in Section 2 is well realized
and the results coincide well with the analysis conclusions in Section
6. It demonstrates the effectiveness of model simplification and
adaptive backstepping control method.

Fig. 7 shows the dynamic pressure throughout the flight, from
which we can see that the dynamic pressure changes very little
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and always stays in the range [2726,2728] psf. So the goal of
keeping the dynamic pressure constant is achieved.

Fig. 8 shows the simulation results of the internal dynamics
θ Q, . We can see that both of them remain bounded throughout
the flight. This demonstrates that the nonminimum phase pro-
blem is solved successfully by using extended control loop, which
guarantees both output tracking and internal stability.

Fig. 9 shows the simulation results of the flexible modes. We
can see that all the flexible modes remain bounded. When vehicle
climbs at the 50th s, the flexible modes are excitated but soon tend
to be stable.

Fig. 10 shows the simulation results of the control inputs. We
can see that both the fuel air ratio ϕ and the elevator angular
deflection δe change smoothly. This indicates that the controller
has a good engineering practicality.



Fig. 13. Monte-Carlo simulation results of approximate backstepping.

Fig. 14. Monte-Carlo simulation results of dynamic surface.
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Fig. 11 shows the estimated values of the uncertainties
^ ^ ^ ^

γ θd d d d, , ,V q1 1 1. Since the uncertainties actually compose of system
states, their true values γ θd d d d, , ,V q1 1 1 are known in simulation and
are also shown in Fig. 11. On one hand, compared with Fig. 6, we
can see that the uncertainties are constants when the commands
keep unchanged. This validates that the assumptions we made are
reasonable. On the other hand, we can see that the estimated
values converge to the true values of the uncertainties when they
turn to constants. This indicates that the adaptive laws work well.

Fig. 12 shows the comparison of the tracking errors for ap-
proximate backstepping, dynamic surface and adaptive back-
stepping. It can be seen that adaptive backstepping has the
minimum tracking errors, especially in altitude tracking. It may
because that adaptive backstepping method uses backstepping
method directly rather than neglect (approximate backstepping)
or estimate (dynamic surface) the command derivatives.

7.2. Monte-Carlo test

In the previous simulations, model parameter uncertainties are
not considered. However, in reality, the model parameters are not
exactly known. The values we used in the controller are their
nominal values whereas their true values in the model may de-
viate from the nominal values within a certain range.

So we should do plenty of simulations to ensure the con-
troller can maintain stable in a real flight. This is the so-called
Monte-Carlo simulation, which can test the robustness of the
controller. Here we consider 63 parameters of uncertainties as
show in Table 1.

In each simulation, the controller is not changed while all
parameters upon of the model are selected within ±10% range of
their nominal values and obey uniform distribution. Take 1000
simulations using the same reference trajectories as before. The
results are shown in Figs. 13–15. Each figure shows the tracking
results of system outputs on the top and the control inputs on
the bottom.

From Fig. 13 and Fig. 14, it can be seen that both approximate
backstepping and dynamic surface lead to divergence of system
outputs and control inputs. In contrast, adaptive backstepping
exhibits good robustness. From Fig. 15 we can see that the tracking
errors of the two outputs both remain small and converge to zero
in the time interval 0–50 s and 120–200 s when the commands
V h,r r are constants, and the control inputs remain bounded at the
same time.
8. Conclusions

This paper investigates the nonminimum phase problem of
Table 1
Uncertain parameters of hypersonic vehicle.

Vehicle parameters ¯S c m I, , , yy

Lift coefficients α δ η η ηC C C C C C, , , , ,L L
e

L L L L
0 1 2 3

Drag coefficients α α δ δ η η ηC C C C C C C C, , , , , , ,D D D
e

D
e

D D D D
2 2 0 1 2 3

Thrust coefficients ϕα ϕα ϕα ϕ η η ηC C C C C C C C C C C, , , , , , , , , ,T T T T T T T T T T T
3 2 3 2 1 0 1 2 3

Pitch moment coefficients α α δ η η ηC C C C C C C, , , , , ,M M M M
e

M M M
2 0 1 2 3

Generalized forces coefficients α α δ η η η

α α δ η η η

α α δ η η η

N N N N N N N

N N N N N N N

N N N N N N N
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Fig. 15. Monte-Carlo simulation results of adaptive backstepping.
hypersonic vehicle. We find out the relationship between non-
minimum phase and backstepping. By extending the control loop
to cover the internal dynamics, a stable nonlinear controller can be
obtained through backstepping. Based on the extended control
loop, the nonminimum phase problem of hypersonic vehicle is
solved by model simplification and adaptive backstepping. Further
work can be focused on extending this method to general non-
minimum phase system and applied to other nonminimum phase
systems. What's more, from the controller design process in this
paper, we can see that the model is not the more accurate the
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better for controller design. Sometimes it's necessary to simplify
the original complex model into a simpler one so that a certain
method can be applicable. Control-oriented modeling technique
provides a useful tool for complex system control design, even
when the system is nonminimum phase.
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